

Crewed and Uncrewed Aircraft Measurements

Summary presentation Project X-Wakes

Geesthacht

Supported by:

Andreas Platis, Kjell zum Berge, Ines Weber, Jens Bange, Astrid Lampert, Thomas Rausch, Konrad Bärfuss, Rudolf Hankers, Mark Bitter, Thomas Feuerle

on the basis of a decision by the German Bundestag

Observational Method Crewed Research Aircraft

Research Aircraft DO-128 (D-IBUF) and Cessna Cessna F406 (D-ILAB) operated by the TU Braunschweig

Technische Universität Braunschweig

Instrumentation of the nose boom:

wind speed/ turbulence (5 hole probe), temperature, humidity

Flight Strategies

49 measurement flights in total performed by the TU Braunschweig, 3 different flight strategies

Global Blockage Effect

Interwakes

Coastal Effects

Global Blockage Effect

Measurements – coastal effects

Flight No.2, 15.03.2020: Mean wind speed and direction: 14 m/s, 190°, stable stratification

More on coastal effects at **11:50 by Astrid Lampert** (TU Braunschweig): Coastal influence on wind speed in the North Sea based on wind lidar, airborne measurements and ERA5 data

Measurement of Interwakes Effects

turblence kinetic energy

WRF validation

Example Flight 35:

mean wind speed

More on Interwakes: **13:50-14:10** Kjell zum Berge (Tübingen) - Comparison of Modelled Cluster Wakes to Aircraft Data in the German Bight

Overview of wake measurement flights

Flight ID	Date	Flight Pattern	Wind Speed [m/s]	Wind Dir [°]	Stability
12 (IBUF)	6/29/2020	G240	15	230	neutral
17 (IBUF)	7/3/2020	G260	10	240	stable
19 (IBUF)	7/14/2020	G270	7	270	stable
23 (IBUF)	7/23/2020	G240	10	225	stable
24 (IBUF)	7/24/2020	G270	10	270	neutral up to 200 m
26 (IBUF)	7/28/2020	G260	13	250	slightly stable
30 (IBUF)	9/24/2020	G240	17	230	neutral up to 300 m
35 (IBUF)	4/8/2021	G240	15	240	neutral
38 (IBUF)	4/13/2021	G000	11	300	stable
39 (IBUF)	4/13/2021	G000	10	300	slightly stable
40 (IBUF)	4/14/2021	G000	7	330	neutral up to 300 m
41 (IBUF)	4/14/2021	G000	6	330	stable
▶ 44 (IBUF/ILAB)	7/27/2021	G240	10	240	slightly stable
46 (IBUF/ILAB)	7/29/2021	G240	17	240	neutral
47 (IBUF/ILAB)	7/29/2021	G245	17	245	neutral up to 700 m
48 (IBUF/ILAB)	7/30/2021	G240	10	240	slightly stable
49 IBUF	11/09/2021	G240	8	200	neutral up to 350 m

Flights with both aircraft D-IBUF and D-ILAB

- 2 flights during (slightly) stable
- 2 fights during **neutral** conditions

Wind speed in the near field

slightly stable

Wind speed in the far field

neutral

slightly stable

Turbulence kinetic energy (TKE) in the near field

slightly stable

Turbulence kinetic energy (TKE) in the near field

slightly stable

Momentum flux in the near field

slightly stable

Momentum flux in the far field

slightly stable

Sensible heat in the near field

slightly stable

SAR Validation with UAS

Project requirements

- Large area ~ 10 km^2
- Low altitude
- True offshore conditions

Realization

- Vertical takeoff and landing
- Flying Beyond Visual Line of Sight
- Video telemetry
- LTE link
- Laser altimeter
- > 100 pages in legal documents
- according to new EU law
- 160 km² restricted airspace
- Collaboration with Fraunhofer IFAM

UAS of type MASC-V

basic meteorology turbulence:

- 3D wind vector
- temperature
- humidity

 $\rightarrow\,$ turbulence and turbulent fluxes

optional / modular:

- Aerosol particles
- CO2 concentration
- charge distribution

Aerial SAR Validation Measurements

No	Date	Launch (UTC)	Ldg. (UTC)	Wspeed (30 m)	Wdir. (30 m)	Comment
1	14.09.21	13:00	13:44	6	Е	Test flight with boat visual
2	17.09.21	16:52	17:52	7	N	SAR validation 8 x 4 km re
3	20.09.21	12:49	13:44	2.5	E	Racetrack pattern - Heligo
4	22.09.21	06:23	07:18	6.5	W	
5	22.09.21	08:10	09:04	8	W	

In collaboration with Fraunhofer IFAM & Testzentrum für maritime Technologien @Heligoland

Fraunhofer

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

SAR vs UAS comparison

Centre for Materials and Coastal Research

Center for Wind Energy Research

SAR wind reconstruction for unstable BL using UAS data

Unstable conditions most frequent one occurring in the German Bight (Platis et al. 2022)

IWES

Conclusion UAS

Review

- UAV open new opportunities for offshore wind energy research
- In-situ measurement of turbulent and thermodynamic quantities
- Soundings (vertical profiles)
- Remote sensing SAR and numerical simulation validation
- BVLOS capabilities demonstrated

Outlook

- Close to wind farms
- Inside wind farms
- Single turbines (distances < ½ D)
- Sea spray measurements

Conclusion Crewed Aircraft

- 49 crewed measurement flights to study several effects and impacts of offshore wind farms in the German Bight
- First order statistics are visible in stable and unstable conditions, but extend longer under stable conditions
- Second order statistics effected by wind farms are significant observable under stable conditions above the wind farm and in regions closer to the wind farm
- In situ airborne data is used for model validation and improvements
- Data is available to the public

Airborne data available:

Rausch, Thomas; Bärfuss, Konrad; Hankers, Rudolf; Bitter, Mark; Feuerle, Thomas; Cremer, Matthias; Angermann, Maik; Füllgraf, Jonas; Lampert, Astrid (2023): In-situ airborne measurements of atmospheric and sea surface parameters related to offshore wind parks in the German Bight. PANGAEA, https://doi.org/10.1594/PANGAEA.955382

Questions?

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

Flight Overview – Coastal Effects

4.1 September/October 2020

No		Data	Launch	Ldg.	Wspeed	Wdir.
INO	Date	(UTC)	(UTC)	(120m)	(120m)	
	1	22.09.20	08:39	09:43	1.5	SW
	2	23.09.20	05:07	06:15	8	SW
	3	23.09.20	06:41	07:50	7.5	SW
	4	25.09.20	10:03	10:41	3.5	S
	5	28.09.20	13:33	16:06	3.5	S
	6	30.09.20	12:24	13:33	7	S
	7	30.09.20	14:11	15:19	6	SSO
	8	01.10.20	11:26	12:41	7	SO

4.2 April 2021

No	Data	Launch	Ldg.	Wspeed	Wdir.
INO	Date	(UTC)	(UTC)	(120m)	(120m)
9	15.04.21	06:42	08:07	2	NE
10	15.04.21	09:09	10:40	3	NE
11	17.04.21	05:59	07:36	3	Ν
12	17.04.21	08:17	09:47	3	Ν
13	18.04.21	09:12	10:35	4.5	NE
14	19.04.21	08:38	10:01	6	Е
15	19.04.21	10:38	11:58	6	Е
16	20.04.21	14:57	16:12	4.5	NE
17	20.04.21	16:45	18:15	4	NE
18	23.04.21	11:10	12:32	5.5	NW
19	23.04.21	13:14	14:34	5.5	NW
20	23.04.21	15:08	16:29	5.5	NW

Centre for Materials and Coastal Research