

X-Wakes

Modelling the future wind farm expansion - an application of X-Wakes results for area development planning

Martin Dörenkämper, Lukas Vollmer - Fraunhofer IWES Oldenburg

*

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Monday, 26.06.2023 | Final Public Project Workshop

© 2023 The X-Wakes Consortium

Motivation

Offshore Wind Energy in the German Bight

- Germany currently has second largest capacity of offshore wind farms connected to the grid
- Currently 7.7 GW out of which 6 GW are located in the German Bight

Motivation

Offshore Wind Energy in the German Bight

- Germany currently has second largest capacity of offshore wind farms connected to the grid
- Currently 7.7 GW out of which 6 GW are located in the German Bight
- Current long-term goals of the German government:
 - 2030 30 GW installed capacity
 - 2035 40 GW installed capacity
 - 2045 70 GW installed capacity
- One of the most densely areas of offshore wind globally

[source: BSH.de]

Methodology

Mesoscale Wake Modelling

- Weather Research and Forecasting Model (version 4.3.1)
- Driven by ERA5 + OSTIA reanalysis
- Model domain covering whole German Bight area at 2km resolution
- Fitch wind farm parametrization:
 - Wind farm effect modelled by elevated sink of momentum and source of turbulence
 - Older farms: several turbines per grid cell

Model Validation

Scanning Lidar and Mesoscale Model

- Scanning lidar measurement campaign at GodeWind
- Duration: 5 months spring to autumn 2020
- Mesoscale model simulations:
 - WRF (red): without wind farm parametrisation
 - WRF-WF (green): including wind farm parametriation
- Good agreement when using wind farm parametrisation
- Difference around 2% in wind speed on average
- Model setup is well suited for cluster wake modelling

[Cañadillas, B et al. Wind Energ. Sci. 2022]

IWES

Fraunhofer

Modelling of the Future Energy Potential

Approach

Modelling of the Future Energy Potential

Approach

Turbine Technology

Two technology platforms in the next 15 years

Years	Р	D	нн
2026–2030	15 MW	240 m	150 m
2031-2035	22 MW	290 m	175 m

Wind Conditions

2006 approximates historical wind conditions

Expansion Phases

Comparison of scenarios for the North Sea (BSH consultation includes significantly more scenarios)

Wind Farm Expansion

Past – 2011-2022

- Mesoscale model simulation **INCLUDING** wakes
- Expansion leads to significant drop in wind conditions inside the wind farm cluster and the vincinity

Wind Farm Expansion

Future – 2023-2030

- Mesoscale model simulation INCLUDING wakes
- Reference year: 2006 representative for the climatology
- Future turbine technology (2025-2030): 15 MW IEA turbine
- Underlying time series data available upon request!

Scenario Results

2021 vs. pre-draft area development plan

- Between 2800 and 4000 full load hours depending on cluster and distance to further expansion areas
- approx. 184 TWh average annual energy yield

* All yield figures **excluding** electrical losses and other technical losses

Scenario Results

Impact of the Expansion in the Netherlands

- Based on Dutch Draft North Sea Programme: expansion of 26 GW installed capacity in prevailing wind direction close to EEZ borders
- Strong impact on clusters EN1, EN6, EN9 and EN14

Total Yield Loss – German Bight: ~ 3 %

Summary & Outlook

Offshore Wakes and Wind Resource Research

- Developed a workflow to investigate expansion scenarios by means of mesoscale wake modelling
- Yields can be evaluated on individual wind farm sites
- Further scenarios currently being investigated, also with variation of turbine parameters
- X-Wakes delivered the basis in terms of model development and validation

Conclusions

X-Wakes

- Germany has ambitious plans for offshore wind farm expansion, but areas are very limited – need to plan wisely already now
- X-Wakes project focused on improving and validating models and transferring knowledge towards more efficient wind farm operation and planning
- Cross-border planning and joint research between North Sea / Baltic Sea states is extremely important
- Many X-Wakes results are publicly available, several publications in preparation

20180321 at 05:48 UTC (Copernicus Sentinel data (2018)

Acknowledgements

The BSH for providing all necessary information on planning phases for the German Bight area!

The X-Wakes project was funded by the German ministry of Economic Affairs and Climate Action (BMWK) under grant number FKZ 03EE3008 (A-G) on the basis of a decision by the German Bundestag.

Computing resources were partly provided by the North-German Supercomputing Alliance (HLRN)

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

Supported by:

Fraunhofer

IWES

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Questions?

15