X-Wakes Public Workshop

Multi-fidelity wake model benchmark of external wake effects

Lukas Vollmer¹, Hauke Wurps², Martin Dörenkämper¹

¹ Fraunhofer IWES² ForWind – Universität Oldenburg

Benchmark idea Isolating the far wake effect

Isolation of impact of long wakes between the two wind farms

- 4 years of concurrent data of Sandbank & Dan Tysk
- Availability and wind conditions at both farms available
- Additional meteorological information from WRF simulation

Isolating the far wake effect

Isolation of impact of long wakes between the two wind farms

- 4 years of concurrent data of Sandbank & Dan Tysk
- Availability and wind conditions at both farms available
- Additional meteorological information from WRF simulation

Comparable studies:

- Nysted Rodsand^(e.g. 1,2)
 - Small distance
 - Possibly large disturbance by land
- Humber Gateway Westermost Rough³
 - Only SCADA data from WMR

¹Nygaard, 2016, ²Fischereit, 2022, ³Nygaard, 2020

Benchmark idea Isolating the far wake effect

Isolation of impact of long wakes between the two wind farms

- 4 years of concurrent data of Sandbank & Dan Tysk
- Availability and wind conditions at both farms available
- Additional meteorological information from WRF simulation

Processing of data for the benchmark

Reducing uncertainties

- Focus on relative production of first row of Dan Tysk
- Reducing influence of
 - Power curve biases, sensitivity to veer, shear, TI
 - Biases / uncertainties in free wind speed
- Benchmark input
 - Wind speeds / directions from front-most row of Sandbank
 - WRF parameters for filtering / as model input
 - IT =
 - Obukhov length
 - Atmospheric boundary layer height

Reducing uncertainties

- Focus on relative production of first row of Dan Tysk
- Reducing influence of
 - Power curve biases, sensitivity to veer, shear, TI
 - Biases / uncertainties in free wind speed
- Benchmark input
 - Wind speeds / directions from front-most row of Sandbank
 - WRF parameters for filtering / as model input
 - TI -
 - Obukhov length
 - Atmospheric boundary layer height

Reducing uncertainties

- Focus on relative production of first row of Dan Tysk
- Reducing influence of
 - Power curve biases, sensitivity to veer, shear, TI
 - Biases / uncertainties in free wind speed
- Benchmark input
 - Wind speeds / directions from front-most row of Sandbank
 - WRF parameters for filtering / as model input
 TI
 - Obukhov length
 - Atmospheric boundary layer height

Model inputs

Low & High Fidelity

Low Fidelity

- Time series of met. conditions
- Binning of calculation results to increase statistical significance of comparison

Why time series?

- Align processing of production and model data
- Correlation of met. conditions is maintained
- Distribution within bins in maintained

No.	WS-95	WD-95	TI-95	RMOL	PBLH
0	7.50	223.2	0.010	0.015	58
1	11.52	263.3	0.054	0.002	554

• Wake losses non-linear to atmospheric input parameters

Model inputs

Low & High Fidelity

High Fidelity

- Selection of sectors, wind speed bins and stability conditions
- Multiple simulations for single wind directions to fill larger wind direction sector in the data
- RANS and LES simulations

	WS-95	TI-95	RMOL	PBLH
Neutral – 265	8	0.055	-0.006	993.672
Neutral – 305	8	0.066	-0.01	949.31
Stable – 265	8	0.024	0.006	329.309
Stable – 305	8	0.024	0.009	246.726

Results Overall

Comparison with time series models

- Model simulations with foxes and contribution from project partners
- Significant spread in model results

Results Overall

Comparison with time series models

What can we already learn from standard approaches?

Jensen - wake decay k=0.04 / k=0.02

Clear underestimation of external wake with standard approach

GDT018

P-GDT005/P

Results

Dependency on meteorologic conditions

Comparison with time series models

- Slight overestimation for near-neutral conditions
- Large underestimation for stable conditions
- Asymmetry in the wake losses

	TI [%]	MOL [m]	PBLH [m]	VEER [deg]
ALL	6.1	-117	826	0.3
NN	6.4	-103	882	0.2
S	2.4	153	219	7.5

0.7

250

WD [deg]

۵

300

1.3

1.2

1.1

0.9

0.8

0.7

All conditions

250

WD [deg]

300

0.7

250

WD [deg]

300

- GDT005/P - GDT018

P.

Results

Dependency on meteorologic conditions

Comparison with time series models

- Slight overestimation for near-neutral conditions
- Large underestimation for stable conditions
- Asymmetry in the wake losses

TI-dependency of wake decay k = 0.4 TI

- Quite good representation of wake deficit
- Modelled wake not much wider

300

Results

Dependency on meteorologic conditions

Comparison with time series models

- Slight overestimation for near-neutral conditions
- Large underestimation for stable conditions
- Asymmetry in the wake losses

	TI [%]	MOL [m]	PBLH [m]	VEER [deg]
ALL	6.1	-117	826	0.3
NN	6.4	-103	882	0.2
S	2.4	153	219	7.5

300

Results Dependency on wind speed

- Split into constant ct and variable ct domain
- Some models are more sensitive to the change of domains
- ! Uncertainties and biases in inflow wind speed much more relevant in variable ct domain

Results Dependency on wind speed

- Split into constant ct and variable ct domain
- Some models are more sensitive to the change of domains
- ! Uncertainties and biases in inflow wind speed much more relevant in variable ct domain

Frontrow DanTysk, south to north

Take-aways Modelling of long wakes

Generalization of results – what should we look for when validating models?

- Consistency over distance (Nygaard, 2022)
- Consistency over atmospheric conditions
- Consistency over wind speed / thrust coefficient
- Can ignored physics explain differences?

Outlook

- More model results to be included
- Extension to high fidelity models (LES, RANS, WRF)
- Analysis of internal wake losses

Contact

Lukas Vollmer Numerical Site Assessment Fraunhofer Institute for Wind Energy Systems IWES Küpkersweg 70 26129 Oldenburg Germany

lukas.vollmer@iwes.fraunhofer.de

Fraunhofer

Supported by:

*

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag