

Numerical design concept for submerged, axially loaded grouted connections

Joshua Henneberg, Peter Schaumann, Alexander Raba Leibniz University Hannover/ForWind Institute for Steel Construction

henneberg@stahl.uni-hannover.de

• Introduction

• Large scale tests

• Numerical design concept

• Summary

F(t)

• Introduction

• Large scale tests

• Numerical design concept

• Summary

F(t)

Grouted connections - general

Introduction

Grouted connections - general

Introduction

Grouted connection of jacket support structure

Introduction

Grouted connection of tripile support structure

Introduction

- Partly submerged ambient conditions
- Axially loaded plus bending

• Introduction

• Large scale tests

• Numerical design concept

• Summary

F(t)

Laboratory tests under dry ambient conditions

Large scale tests

<u>Current guidelines</u> <u>based on laboratory</u> <u>tests under dry ambient</u> <u>conditions!</u>

> ULS (FLS)

Laboratory tests under submerged ambient conditions

Large scale tests

<u>Current guidelines</u> <u>based on laboratory</u> <u>tests under dry ambient</u> <u>conditions!</u>

> ULS? FLS?

Failure under submerged ambient conditions

Large scale tests

Limit state for numerical concept

Large scale tests

• Introduction

• Large scale tests

• Numerical design concept

F(t)

Finite element model

Universität

Hannover

Finite element model

Numerical design concept

- Displacement controlled simulation (by reference point)
- Modelled tubes -> exclude influence boundary conditions
- Grout: nonlinear (CDP)

stress o

Steel: linear elastic

• Interaction: Surface-to-surface

strain ϵ

- Hard contact (normal direction)
- Penalty μ =0.4 (tangential direction) according to Lotsberg (2013) and

Fehling (1990)

eibniz

Universität

Hannover

2D

Grout

Boundary

condition

F(t)

Reference Point

Pile

Sleeve

Numerical design concept

Flowchart

ModelCode 2010

Input of global load simulation

Comparison laboratory test and FE-simulation

• Introduction

• Large scale tests

• Numerical design concept

• Summary

F(t)

Summary

Design concept for submerged axially loaded grouted connections

Conditions of use

- Submerged ambient conditions
 - → different failure mechanism
- Predominantly axial loading

Requirements for FE-model

- 2D rotational symmetric FE-model
 - Depiction of shear keys
 - Nonlinear material (e. g. Concrete Damaged Plasticity)
 - Highly discretized mesh
- Local stress analysis of grout material according to ModelCode 2010

Thank you to our project partners and supporters!

Thank you for your attention!

www.stahlbau.uni-hannover.de www.forwind.de

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

