

# OFFSHORE WIND R&D Conference 2018

15<sup>th</sup> November 2018

Bremerhaven, Germany

# Optmization of Jacket Substructures Considering Detailed Cost and Load Assumptions

Jan Häfele Cristian Guillermo Gebhardt Raimund Rolfes

Leibniz Universität Hannover/ForWind, Institute of Structural Analysis



#### Content



- ➤ Motivation
- ➢ Optimization problem
- ➤ Cost function
- ➤ Constraints
- ≻ Results
- ➤ Conclusion









## ➤ Motivation

- Optimization problem
- ➤ Cost function
- > Constraints
- ➢ Results
- Conclusion







#### Motivation



Jackets are appropriate substructures for intermediate water depths and/or turbines with high rated power

But: Costs are still high

Smarter designs are a key to cheaper structures!



Source: W. Rademacher (License: CC BY-SA 3.0) https://commons.wikimedia.org/w/index.php?curid=19811340







#### Motivation





OFFSHORE WIND R&D Conference 2018





0

100



- ➤ Motivation
- ➢ Optimization problem
- ➤ Cost function
- ➤ Constraints
- ➢ Results
- ➤ Conclusion











| Jacket topology parameters |                               |  |  |  |  |  |
|----------------------------|-------------------------------|--|--|--|--|--|
| $N_L$                      | Number of legs                |  |  |  |  |  |
| $N_X$                      | Number of bays                |  |  |  |  |  |
| R <sub>foot</sub>          | Foot radius                   |  |  |  |  |  |
| ξ                          | Head radius / foot radius     |  |  |  |  |  |
| L                          | Total jacket length           |  |  |  |  |  |
| L <sub>OSG</sub>           | Distance ground – first layer |  |  |  |  |  |
| L <sub>MSL</sub>           | Distance MSL – TP             |  |  |  |  |  |
| $L_{TP}$                   | Distance TP – last layer      |  |  |  |  |  |
| q                          | Segment ratio                 |  |  |  |  |  |
| <i>x<sub>MB</sub></i>      | Mud brace flag (Boolean)      |  |  |  |  |  |









OFFSHORE WIND R&D Conference 2018



 $\beta = \frac{D_B}{D_I} \qquad \beta_b = \frac{D_{Bb}}{D_I} \qquad \beta_t = \frac{D_{Bt}}{D_I}$ 

- $\gamma = \frac{D_L}{2T_L} \qquad \gamma_b = \frac{D_L}{2T_{Lb}} \qquad \gamma_t = \frac{D_L}{2T_{Lt}}$
- Joint gap neglected for structural mesh  $au = \frac{T_B}{T_L}$   $au_b = \frac{T_{Bb}}{T_{Lb}}$   $au_t = \frac{T_{Bt}}{T_{Lt}}$

(according to DNV GL RP-C203)Index b: BottomIndex t: Top





| Topology parameters |                               |            | Geometry and material parameters |  |  |
|---------------------|-------------------------------|------------|----------------------------------|--|--|
| $\Lambda$ $N_L$     | Number of legs (discrete)     | $D_L$      | Leg diameter                     |  |  |
| $\bigwedge$ $N_X$   | Number of bays (discrete)     | $\beta_b$  | $D_{Bb}/D_L$                     |  |  |
| R <sub>foot</sub>   | Foot radius                   | $\beta_t$  | $D_{Bt}/D_L$                     |  |  |
| ξ                   | Head radius / foot radius     | $\gamma_b$ | $D_L/2T_{Lb}$                    |  |  |
| L                   | Total jacket length           | $\gamma_t$ | $D_L/2T_{Lt}$                    |  |  |
| L <sub>OSG</sub>    | Distance ground – first layer | $	au_b$    | $T_{Bb}/T_L$                     |  |  |
| L <sub>MSL</sub>    | Distance MSL – TP             | $	au_t$    | $T_{Bt}/T_L$                     |  |  |
| $L_{TP}$            | Distance TP – last layer      | Ε          | Material Young's modulus         |  |  |
| q                   | Segment ratio                 | G          | Material shear modulus           |  |  |
| $\bigwedge x_{MB}$  | Mud brace flag (Boolean)      | ρ          | Material density                 |  |  |



















- > Motivation
- Optimization problem
- ➤ Cost function
- > Constraints
- ➢ Results
- ➤ Conclusion







#### Cost function

٦



| APEX = |   | 1.0 kg <sup>-1</sup>               | × | Structural mass [kg]                 | (Material costs)     |
|--------|---|------------------------------------|---|--------------------------------------|----------------------|
|        | + | $4.0 \times 10^{6} \text{ m}^{-3}$ | × | Weld volume [m <sup>3</sup> ]        | (Fabrication costs)  |
| \$     | + | $100.0 \text{ m}^{-2}$             | × | Outer surface area [m <sup>2</sup> ] | (Coating costs)      |
|        | + | $2.0 \times 10^4 \text{ m}^{-1}$   | × | Head radius [m]                      | (TP costs)           |
|        | + | $2.0 \times 10^{5}$                | × | Number of legs [–]                   | (Transport costs)    |
|        | + | 2.0 kg <sup>-1</sup>               | × | Structural mass [kg]                 | (Installation costs) |
|        | + | $2.0 \times 10^{5}$                |   |                                      | (Fixed costs)        |

(valid for 5 MW scale and concept without prefabricated joints, unquantifiable impacts, especially on T&I costs, neglected)









- > Motivation
- Optimization problem
- ➤ Cost function
- ➤ Constraints
- ➢ Results
- ➤ Conclusion







#### Constraints





OFFSHORE WIND R&D Conference 2018





14





- > Motivation
- Optimization problem
- ➤ Cost function
- > Constraints
- ➢ Results
- Conclusion









#### Setup

- ➢ NREL 5MW reference turbine
- FINO3 environmental data
- ➢ 50m water depth
- ➢ OC3 soil conditions
- continuous design variables -/+ 20% w.r.t OC4 jacket
- all time domain simulations performed with FAST v8
- Matern 5/2 kernel for GPR (surrogate models)

Problem is solved using

- two different gradient-based optimization algorithms (sequential quadratic programming/interior-point methods)
- gradients obtained by finite differences
- ➤ 100 random starting points
- fixed discrete design variables to avoid a mixed-integer problem (six sub-problems)

OFFSHORE WIND R&D Conference 2018





#### Cost and mass comparison 3 legs 3 legs 3 legs 4 legs 4 legs 4 legs 3 bays 5 bays 3 bays 4 bays 5 bays 4 bays 2 831 000 3 112 000 2 965 000 3 069 000 3 162 000 3 266 000 +9,9% +4,7% +8,4% +15,4% +11,7% 467t 412t 439t 438t 423t 444t +6,5% +13,3% +6,3% +2,7% +7,8%

ForWin

OFFSHORE WIND R&D Conference 2018

18

Leibniz

100

Universität <u>Ha</u>nnover



# Optimal design variables

OFFSHORE WIND R&D Conference 2018

|                              | P A    | PA     | R.A.   | REA    | REA    | REA    |
|------------------------------|--------|--------|--------|--------|--------|--------|
| N <sub>L</sub>               | 3      | 3      | 3      | 4      | 4      | 4      |
| N <sub>X</sub>               | 3      | 4      | 5      | 3      | 3      | 3      |
| <i>R<sub>foot</sub></i> in m | 12.735 | 12.735 | 12.735 | 10.894 | 10.459 | 10.549 |
| ξ                            | 0.533  | 0.533  | 0.533  | 0.533  | 0.533  | 0.533  |
| q                            | 0.937  | 0.941  | 0.936  | 0.813  | 0.809  | 0.977  |
| $D_L$ in m                   | 1.021  | 1.021  | 1.023  | 0.960  | 0.960  | 0.960  |
| $\beta_b$                    | 0.800  | 0.800  | 0.800  | 0.800  | 0.799  | 0.787  |
| $\beta_t$                    | 0.800  | 0.800  | 0.800  | 0.800  | 0.800  | 0.800  |
| $\gamma_b$                   | 12.000 | 12.000 | 12.000 | 12.680 | 12.259 | 12.000 |
| γ <sub>t</sub>               | 16.165 | 16.029 | 15.928 | 18.000 | 18.000 | 18.000 |
| $	au_b$                      | 0.513  | 0.505  | 0.493  | 0.497  | 0.493  | 0.478  |
| $	au_t$                      | 0.472  | 0.466  | 0.454  | 0.383  | 0.387  | 0.383  |

**ForWin** 

Zentrum für Windenergieforschung

19

Leibniz

02

100

Universität

Hannover



### Cost breakdowns











- > Motivation
- Optimization problem
- ➤ Cost function
- > Constraints
- ➢ Results
- ➤ Conclusion







#### Conclusion



#### Approach

- Improvement of state of the art in multiple ways
- Intended for conceptual and pre-design studies
- Numerically efficient by surrogate modeling
- To be combined with tube sizing approaches

#### Results

- Three-legged jackets seem to be slightly advantegous compared to four-legged ones from an economical point of view
- Light jackets are not necessarily cheap jackets
- Transport and installation costs may drive the design of jackets significantly







# OFFSHORE WIND R&D Conference 2018

15<sup>th</sup> November 2018

Bremerhaven, Germany

# Thank you for your attention!

<u>Jan Häfele</u> Cristian Guillermo Gebhardt Raimund Rolfes Leibniz Universität Hannover/ForWind, Institute of Structural Analysis

