

Welcome

WIND. ASSURING CONFIDENCE THROUGH COMPETENCE

Martin Kohlmeier

Investigation of Degradation Processes in Large-scale Experimental Tests by Structural Health Monitoring Techniques and Numerical Simulations

Martin Kohlmeier¹, Severin Spill¹, Alexander Schenk¹, Herbert Friedmann²

¹Fraunhofer Institute for Wind Energy Systems ²Wölfel Engineering GmbH + Co. KG

Offshore Wind R&D Conference 2018, Bremerhaven

Outline

- 1. Introduction
- 2. Motivation & Experimental Set-up
- 3. Experimental Results
- 4. Simulation and Validation
- 5. Summary & Outlook

1. Introduction

Research with added value

Field measurements, computational fluid dynamics and wind farm simulation

Rotor

Drive train and grid connection

Support structures, foundations and assessment of soil conditions

4/25

Support structures & foundations

Experimental tests in large scale

- Experimental model testing on foundation elements and substructures
- < Numerical calculation and simulations
- Oevelopment and testing of environmentally friendly construction methods
- Simulation of the structure's dynamic and fatigue behavior under the long-term cyclic influence in "time lapse"

Validation of design approaches and monitoring methods

- \Rightarrow Foundation installation techniques
- \Rightarrow Foundation load-bearing behavior
- \Rightarrow Structural Health Monitoring (SHM) systems

Support structures & foundations

Numerical modeling approach (Virtual Test Bench)

- Application of Python and Abaqus Scripting Interface
- Object oriented program for numerical model set-up
 - Parameterization (geometry, material or mesh properties)
 - Realization of different modeling strategies

Virtual Test Bench is providing faster insight into tests strategies and results

 \Rightarrow Adaptation of the model during design phase based on computer aided design (CAD)

- \Rightarrow Sensitivity studies w.r.t. mesh refinement, model scales or material properties
- \Rightarrow Basis for validation of test strategies and numerical modeling
- \Rightarrow Documentation in terms of quality management

2. Motivation & Experimental Set-up

Joint Research Project: Quality Assurance and SHM of Grouted Connections of Underwater Support Structures for Offshore Wind Turbines - **QS-M Grout**

Sub project at Fraunhofer IWES: "Assessment of Grouted Connections by Experimental and Numerical Investigations"

Experimental test set-up

9/25

Grout damaging and monitoring in the clamping field

Assessment of SHM methods in foundation test pit

Assessment of structural health monitoring (SHM) systems

Numerical modeling, testing & degradation

Numerical modeling of the damage process in grouted connections for design purpose and for validation against measurement data

Experimental test set-up for damaging a grouted connection

Experimental test set-up in the test pit

10/25

Assessment of SHM systems

Strategies

- Test set-up based on computer aided design and numerical predictions
- Large-scale model tests under realistic offshore conditions

Objective

⇒ Assessment of SHM systems regarding a specific damaging process and a realistic soilstructure interaction

3. Experimental Results

Specific grout damaging with hydraulic actuator – damaging approach

Exemplary evaluation

Load-displacement curves at transition piece 1 (TP1)

Grout damage test at 90 kN load (March 6, 2017)

Offshore Wind R&D Conference, Bremerhaven, Nov. 14, 2018 Martin Kohlmeier et al.

© Fraunhofer

Specific grout damaging with hydraulic actuator – load-displacement analysis

Incremental development of inner area of 25 kN reference hysteresis before and after load steps of 25 kN, 50 kN, 70 kN and 90 kN for transition piece TP 1 (left) and TP 2 (right)

10 kN / 25 kN load

- No significant detection of damage in view of nonlinear load-displacement relation
- < No acoustic emission

50 kN / 70 kN / 90 kN load

 Grout damage with distinct acoustic emissions during each cycle especially at the beginning of a higher loading step

13/25

90 kN load

 Beginning of grout disruption at the upper end

TP2

90 kN

Visual inspection of TP1 (after loading of 90 kN)

Extracted parts of grout material after grout opening

Transition piece 1: Extracted grout material from the most loaded region (80 cm x 20 cm). The upper part of transition piece is directed to the right.

14/25

Visual inspection of TP2 (after loading of 100 kN, Phase 2)

Extracted parts of grout material after grout opening

15/25

4. Simulation & Validation

16/25

Damaging process of the grout at the clamping field

Offshore Wind R&D Conference, Bremerhaven, Nov. 14, 2018 Martin Kohlmeier et al. © Fraunhofer

Damaging process of the grout at the clamping field

Compressive damage (crushing) using concrete damaged plasticity model

18/25

Offshore Wind R&D Conference, Bremerhaven, Nov. 14, 2018 Martin Kohlmeier et al. © Fraunhofer

Strain gauge measurements and structural dynamics

Evaluation of fiber optical strain gauge measurements at the pile shaft at different depths

- < Structural dynamic behavior
- Test with excitation of constant frequency

Time series of strains at measuring depth ME7, ME6 und ME4

Strain gauges (green and blue) at the pile shaft

Representation of strain values in frequency domain

Simulation of structural dynamics in the test pit

Offshore Wind R&D Conference, Bremerhaven, Nov. 14, 2018 Martin Kohlmeier et al. © Fraunhofer

5. Summary & Outlook

Summary

SHM at model scale

- Experimental model tests at large scale (1:10) seem to be meaningful for SHM assessment
- Specific changes in offshore environmental conditions can be reproduced in the model

Virtual Test Bench approach

- Analyses of measured changes in the structural behavior during loading phases correspond to estimations of the monitoring system
- Setting-up variations of numerical models is very convenient for design or sensitivity studies

23/25

Outlook

Reduction of O&M costs

- \prec Structural health monitoring is an important basis for cost reduction
- Monitoring systems may reduce number of periodic inspections
- < Optimization of sensor applicability and reliability

Improving the knowledge on offshore wind turbine behavior

- Investigation of the wind turbine's as-built characteristics
- \prec Development of degradation models for long term prediction
- \prec Validation of numerical models for offshore wind turbine modeling

Acknowledgements Fraunhofer IWES is funded by the:

Federal Republic of Germany

Federal Ministry for Economic Affairs and Energy

Federal Ministry of Education and Research

European Regional Development Fund (ERDF):

Federal State of Bremen

- Senator of Civil Engineering, Environment and Transportation
- ✓ Senator of Economy, Labor and Ports
- -< Senator of Science, Health and Consumer Protection
- Bremerhavener Gesellschaft für Investitions-Förderung und Stadtentwicklung GmbH

Federal State of Lower Saxony

Free and Hanseatic City of Hamburg

24/25

IWES

Thank You for Your Attention

Any questions?

martin.kohlmeier@iwes.fraunhofer.de

25/25

