eolotec bearing technology

Monitoring of Blade Bearings

IWES Offshore R&D Conference

November 2018

Company Portfolio

Eolotec GmbH

- Established 2012
- Bearing knowhow since 2004
- Focused on large wind turbine bearings
- Located in Nuremberg
- 10 employees
- Several awards
- Production in Germany
- Engineering, prototypes, series
- Bearing services and consulting
- On Demand R&D

confidential © eolotec GmbH

Eolotec GmbH

Products

- Bearing Systems
 - Ready to mount Main Bearing Units (MBU)
 - Exchange solutions
- Lifting, testing, assembling
 - Rotor-mounting
 - Generator lifting
 - Blade bearing testing

Sensor systems

- Premesy: reliable preload control
- BBG: blade bearing monitoring

confidential © eolotec GmbH

eolotec

Load situation in blade bearings

Bearings and geometries

- Up to now: one or two-rowed preloaded ball bearings (four-point bearings)
- Technical design with cage or spacers
- Raceways are induction hardened
- Pitched rings might have gears
- Bolt connection of rings with blade and hub.

\rightarrow High alternating bending moments with rotor frequency

Load situation in blade bearings

Influences on bearing deformation

- Calculation of the system with hub, blade and bolts (only rings visualized)
- Deformation visualized in hundredfold enlargement

 \rightarrow Strong misalignment of the rings

Ordinary Bearing Monitoring

Blade Bearing Examination

- Recognizable noises during pitching
- Delayed pitching
- Oifferent pitch current
- Offline measurement of axial tilting clearance
- Grease samples
- Ultrasonic measurements

2018

Ordinary Bearing Monitoring

Blade Bearing Examination

Grease sample

¥			
WEAR			
Eisen	Fe	mg/kg	23561
Chrom	Cr	mg/kg	623
Zinn	Sn	mg/kg	0
Aluminium	AI	mg/kg	43
Nickel	Ni	mg/kg	166
Kupfer	Cu	mg/kg	308
Blei	Pb	mg/kg	0
Mangan	Mn	mg/kg	1221
PQ-Index	-		40004
CONTAMINATION			
Silizium	Si	mg/kg	519
Kalium	K	mg/kg	25
Natrium	Na	mg/kg	116
Lithium	Li	mg/kg	1165
Titan	Ti	mg/kg	6
Vanadium	V	mg/kg	4
Wolfram	W	mg/kg	7955
Cadmium	Cd	mg/kg	64
Kobalt	Co	mg/kg	32
Wasser K. F.	ppm		156129

eolotec

\rightarrow Sample quality depends strongly on sample point

 \rightarrow Pollution not comparable with rotating bearings

Possible damages

False Brinelling

Edge chipping

- Broken rolling elements
- Secondary damages due to overrun

Damages During Operation

Possible resulting damages

- Damages on pitch adjustments
- Sealing damages
- Failure of connecting elements

confidential © eolotec GmbH

Damages During Operation

eolotec bearing technology

Blade Bearing Cracks

Outer ring, (geared pitch)

Outer ring, (hydraulic pitch)

Inner ring, (geared pitch)

\rightarrow Increasing number of ring cracks in field

Damages During Operation

Blade Bearing Cracks

2.5MW turbine: Broken outer ring – working bolt connection

eolotec

Monitoring of changes in deformation

Onitoring of load M_{XB} by measuring the deformation of the rings

- Wear processes within the rings and the rolling elements lead to an increased deformation of the rings
- Ring cracks, ball breakage or outbreaks have direct influence on ring deformation

→ The continuous monitoring allows to detect the probable time of failure

BBG User Platform

- An online platform displays the BBG measurements of all wind turbines
- Customer access to online platform

Exemplary measurement on BBG-Platform

Messwerte vom 07.06.2018 00:00

Sensor	Minimum	Mittelwert	Maximum
Sensor 1	-0.34 mm	5.49 mm	0.34 mm
Sensor 2	-0.37 mm	4.89 mm	0.37 mm
Sensor 3	-0.35 mm	4.7 mm	0.35 mm

R²: 0

eolotec

Exemplary measurement on BBG-Platform

Measurement of complete rpm range

Classified 10-13 rpm

R²: 0.02

0.00

07.06.18 06:00

13 25 03 18 19:46 17 04 18 23:20 11 05 18 02:53

eolotec

Comparison of different measurements

Turbine in operation: 2,5MW power class with issues

eolotec

bearing technology

Currently installed on 8 different turbine types Over 40 systems in field

- BBG Box monitors each single blade bearing
- Independent of controller or CMS
- Minimal power use
- No impact onto turbine structure
- Designed for rough conditions IP54
- Low data rate (< 100 kB/box)</p>

ightarrow Adaptive assembly enables application in all common turbines

BBG Boxes in different turbines

confidential © eolotec GmbH

2018

Conclusion

- BBG system provides reliable information to the current condition of blade bearings
- Due to the low slewing rate the damage progress is comparatively slow
- Measured deformation increases with growth of damage
- Appropriate measures can keep a pre-damaged bearing operational
- A potential exchange can be scheduled in advance
- Targeted monitoring by BBG makes further operation possible

eolotec bearing technology

Eolotec GmbH Fürther Straße 176 90429 Nürnberg Tel: 0911 / 23 95 17– 0 Fax: 0911 / 23 95 17– 29 info@eolotec.com www.eolotec.com