

Damage detection in offshore wind turbine grouted connection by nonlinear harmonic identification

Offshore Wind R&D 2018, Bremerhaven, 14.11.2018

<u>Nathalie MÜLLER</u>, Research Institute of Civil Engineering and Mechanics GeM (University of Nantes) / Fraunhofer IWES

> Peter Kraemer, University of Siegen Dominique Leduc, University of Nantes Franck Schoefs, University of Nantes

Context – The grouted connection of OWTs

Significant sliding damages of grouted connections have been reported in 2009-2010

- \rightarrow 600 of the 988 monopile OWTs in the North Sea
- → Cylindrical with shear keys + conical design recommended (DNV-OS-J101 (2014), DNV-OS-C502 (2012), DNVGL-ST-0126 (2016))

OWT with a monopile substructure and detail of a grouted joint (DNV, 2014)

OWT with a tripod / jacket substructure and detail of a grouted joint (Schaumann et al., 2013)

Significant sliding damages of grouted connections have been reported in 2009-2010

- \rightarrow 600 of the 988 monopile OWTs in the North Sea
- \rightarrow Cylindrical with shear keys + conical design recomd (DNV-OS-J101 (2014), DNV-OS-C502 (2012) 2016))

OWT with a monopile substructure and detail of a grouted joint (DNV, 2014)

Structural Health Monitoring (SHM)

- Real-time information from permanently fixed sensing or actuation devices (accelerometers, strain gages, inclinometers, acoustic sensors ...)
- Recording, analyzing and predicting the structural health conditions of a structure
- \rightarrow condition-based maintenance strategy

A Numerical model for analyzing the nonlinear behavior of the grouted connection

Fatigue tests of grouted connection specimens

- At the Leibniz University of Hannover (LUH), Institute for Steel Construction
- Under the GROWup Project
- \rightarrow Fatigue behavior of the grouted connection
- A SHM for detecting the damages during the test
 - Instrumentation: fiber optic sensors (FBG)
 - Vibration-based detection methodology (nonlinear approach)
 - \rightarrow How effective can be the system?

Numerical modelling of grouted connection

- 2D axisymmetric modelling of a large scale grouted connection (same dimensions as for specimen for fatigue test)
- Pure elastic modelling for the steel parts
- Concrete Damaged Plasticity model (CDP) for the grout

Numerical modelling of grouted connection

- Concrete Damaged Plasticity model (CDP) for the grout
 - the main two failure mechanisms are tensile cracking and compressive crushing
 - The yield surface (Lubliner-Lee-Fenves definition), gives the ability to describe first yield of the material, but also the stiffness degradation due to cyclic loading
 - → Defined by following parameters: dilatancy angle, eccentricity, biaxial to uniaxial compressive strength ratio, shape parameter

IWES

Numerical modelling – Crack pattern

- Interface shear strength fg_sliding at 10.4 MPa
- Grout matrice strength, fg_shear at 7.88 MPa \rightarrow F ULS = 7.55 MN
- Numerical results for compressive loading at F ULS
- Comparison with experimental results with same GC dimension in dry conditions (Bechtel, 2016)
- \rightarrow Same crack patterns
 - \rightarrow Crushing at shear keys
 - → Cracks between shear keys P1-S1, P1-S2, P4-S5 and P5-S5

Max. principal plastic strain in the grout at ULS compressive load (F ULS = 7.55 MN)

(Avg: 75%)

9

Numerical modelling – Damage and nonlinear behavior

Fraunhofer

10

IWES

Simulation of interface failure between sleeve and grout at the top of the connection, by reduction of friction coefficient FC

 Without damage: FC=0.70; Damage Level 1: FC=0.35; Damage Level 2: FC=0.00

Numerical modelling – Damage and nonlinear behavior

Simulation of compression cracks at the top of the connection

- Damage Level DL1: Crack between shear keys S1 P1
- Damage Level DL2: Crack between shear keys S1 P1 and S2 P1
- --> odd subharmonics + appearance of superharmonics

aunhofer

IWES

11

S, Mises

(Avg: 75%)

Numerical modelling – Damage and nonlinear behavior

Selection of a Damage Indicator DI

- Calculation of DI at 3 positions along the sleeve
- For 2 damage levels

→ Total change of subharmonics and superharmonics in the normalized ESD spectrum

$$DI = \sum_{j=1}^{N} (H_{j,damaged} - H_{j,healthy})$$

with H_j being the peak amplitude of the subharmonic j, and N the total number of subharmonics

Fraunhofer

IWES

Numerical modelling – Damage and nonlinear behavior

Selection of a Damage Indicator DI Calculation of DI at 3 positions along the sleeve Case 2: Crack failure For 2 damage levels • Damage Indicator DI - Compression strut cracks at the top shear keys 350 **P1** Damage level 1: Crack P1-S1 Damage level 2: Crack P1-S1 and P1-S2 S1 300 → Total change of subharmonics S2 250 and superharmonics in the [dB] normalized ESD spectrum value 200 150 ludicate $DI = \sum_{i=1}^{N} (H_{j,damaged} - H_{j,healthy})$ Damage | Damage 50 with H_i being the peak amplitude of the subharmonic j, and N the

Inf

Mid

total number of subharmonics

Sup

Numerical modelling – Damage and nonlinear behavior UNIVERSITÉ DE NANTES

Selection of a Damage Indicator DI Calculation of DI at 3 positions along the sleeve Case 2: Crack failure For 2 damage levels Damage Indicator DI5 - Compression strut cracks at the top shear keys **P1** Damage level 1: Crack P1-S1 Damage level 2: Crack P1-S1 and P1-S2 S1 → Evolution of one specified odd S2 subharmonic f5 in the normalized Damage Indicator value [dB] ESD spectrum $DI = (H_{i,damaged} - H_{j,healthy})$ with H_i being the peak amplitude of the subharmonic j

Fraunhofer

IWES

•

Numerical modelling – Damage and nonlinear UNIVERSITÉ DE NANTES

Selection of a Damage Indicator DI Calculation of DI at 3 positions along the sleeve Case 2

• For 2 damage levels

→ Evolution of one specified odd subharmonic f7 in the normalized ESD spectrum

$$DI = (H_{j,damaged} - H_{j,healthy})$$

with H_j being the peak amplitude of the subharmonic j

Fatigue tests of grouted connection specimens

Grouted-connection specimen:

- Large scale tripod grouted connection specimen
- Designed with 5 shear keys
 positioned in the center of the
 grouted connection
- Filled with fresh water 24h before the test

Cut-off view of a grouted connection specimen (tripod structure in a scale of 1:4)

Fatigue tests of grouted connection specimens

Testing procedure:

- 10 MN servo-hydraulic machine of LUH (Institute of Building Material Science)
- Incremental axial and cyclic
 loads (1Hz), where each load
 level is applied for 100,000
 cycles

Load Scenario	LS1	LS2
F _{max} / F _{min} [MN]	+1 / -1	+2 / -2

Grouted connection specimen in the servohydraulic testing machine

FBG Working principle:

$\Delta \lambda / \lambda_0 = (1-p_e)^* \epsilon_z + (\alpha_{\wedge} + \alpha_n)^* \Delta T$

with $\Delta\lambda$ the wavelength variation, ϵ_z the strain, λ_0 the initial wavelength, p_e the photo-elastic coefficient, α_A the thermal dilatation, α_n the thermo-optic coefficient, and ΔT the temperature variation

FBG advantages: robust (harsh conditions), immune to electromagnetic interferences, multiplexing ...

FBG Working principle:

FBG advantages: robust (harsh conditions), immune to electromagnetic interferences, multiplexing ...

FBG Working principle:

$\Delta \lambda / \lambda_0 = (1-p_e)^* \epsilon_z + (\alpha_{\wedge} + \alpha_n)^* \Delta T$

with $\Delta\lambda$ the wavelength variation, ϵ_z the strain, λ_0 the initial wavelength, p_e the photo-elastic coefficient, α_A the thermal dilatation, α_n the thermo-optic coefficient, and ΔT the temperature variation

FBG advantages: robust (harsh conditions), immune to electromagnetic interferences, multiplexing ...

Design & application:

- Bare fibers bonded on the steel surface of the sleeve in the shear key area
- 9 FBGs for strain measurement
- 3 FBGs for temperature compensation
- Application method: glued with a cyanoacrylate glue + polyurethane lack (humidity and mechanical protection)

Design & application:

- Bare fibers bonded on the steel surface of the sleeve in the shear key area
- 9 FBGs for strain measurement
- 3 FBGs for temperature compensation
- Application method: glued with a cyanoacrylate glue + polyurethane lack (humidity and mechanical protection)

Design & application:

- Bare fibers bonded on the steel surface of the sleeve in the shear key area
- 9 FBGs for strain measurement
- 3 FBGs for temperature compensation
- Application method: glued with a cyanoacrylate glue + polyurethane lack (humidity and mechanical protection)

Monitoring of the appearance of nonlinearities and calculation of the Damage Indicator DI (all subharmonics)

PAYS DE LA LOIRE

1ARINE

NERG

CENTER search, Educa & Innovation PAYS de la LC \rightarrow Total change of subharmonics in the normalized ESD spectrum

$$DI = \sum_{j=1}^{N} (H_{j,damaged} - H_{j,healthy})$$

with H_j being the peak amplitude of the subharmonic j, and N the total number of subharmonics

Monitoring of the appearance of nonlinearities and calculation of the Damage Indicator DI (all subharmonics)

 \rightarrow Total change of subharmonics in the normalized ESD spectrum

$$DI = \sum_{j=1}^{N} (H_{j,damaged} - H_{j,healthy})$$

with H_j being the peak amplitude of the subharmonic j, and N the total number of subharmonics

→ Cyclic creep curve

Monitoring of the appearance of nonlinearities and calculation of the Damage Indicator DI (all subharmonics)

Damage Indicator Values for every sensor at 2.52*10 ⁴ cycles [dB]					
	Inferior level	Mid-level	Superior level		
Angle 1	154.1	210.7	231.5		
Angle 2	158.9	275.8	403.6		
Angle 3	137.1	205.9	445.9		

Damage indicator – curve slope for FBG S2, FBG M2 and FBG I2 at the end of LS1 and start of LS2 [dB/1000 cycles]

	End of LS1	Start of LS2
FBG	- 3.3	+ 44.9
S 2		
FBG	+ 0.9	+ 24.38
M2		
FBG	- 0.18	+ 11.36
12		

→ Early detection

26

Data analysis and damage detection

Monitoring of the appearance of nonlinearities and calculation of the Damage Indicator DI5 (subharmonic f5)

Monitoring of the appearance of nonlinearities and calculation of the Damage Indicator DI5 (subharmonic f5)

Monitoring of the appearance of nonlinearities and calculation of the Damage Indicator DI5 (subharmonic f5)

→ Detection of damage in the Mid-Inf section of the grout before break (interface failure)

Damage indicator – DI5 relative evolution				
	End of LS1	Start of LS2		
FBG S1	0.55	-0.48		
FBG S2	-0.03	-1.97		
FBG S3	0.03	-0.90		
FBG M1	-0.01	2.75		
FBG M2	0.00	1.03		
FBG M3	-0.02	3.60		
FBG I1	-0.01	0.63		
FBG I2	-0.01	0.79		
FBG I3	-0.01	0.59 29		
		IWES		

Conclusion

Monitoring of grouted connection

 SHM system based on fiber optic sensors associated with a signal-based detection methodology (vibration-based, nonlinear approach)

Damage detection

- Selection of Damage Indicators based on subharmonics and superharmonics evolution in the output signal
- Detection of the occurrence (early stage)
- Damage localization and severity can be achieved with particular caution (i.e. with a well understanding of the nonlinear behavior of the structure in healthy and damage states)

Future work

THANK YOU FOR YOUR ATTENTION

nathalie.mueller@iwes.fraunhofer.de nathalie.muller@univ-nantes.fr

