

Findings on scouring and wind-wave correlation for OWEC design recommendations and offshore operations

A. Hildebrandt, A. Schendel, M. Welzel, T. Schlurmann

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

- Motivation & Objectives
- Characteristics of wind and wave occurrence
- Experimental Conditions
- Scour development in uni-directional and multi-directional waves
 - > Development over time and space
 - > Influence of *KC*, U_{cw} on scour depth
- Summary

Leibniz

Motivation & Objectives

- Seeking for load factors and lower costs, since offshore wind energy expands further offshore
- Wind driven wave irregularity and directionality are important aspects of offshore sea states
 - Directionality of normal and extreme conditions (Misalignment)
- Lack of empirical data on the scouring processes induced by uni- & multi-directional waves combined with current
- Improvement of scour prediction by conducting experimental studies and to deepen the understanding of scouring process

Leibniz

Universität Hannover

Wind-Wave Misalignment

Origin: www.fino-offshore.de

- 45 km North of Borkum island at 30 m water depth
- Wind measurements at heights from 33 to 100 m above LAT
- Cup anemometers, UltraSonic Anemometers (USA), wind vanes
- Datawell WaveRider MKIII, Radar, and Current Profiler

l l Leibniz i o 2 Universität t o 4 Hannover

Misalignment – Time Sequence January 2005

A. Hildebrandt, A. Schendel, M. Welzel, T. Schlurmann | Offshore Wind R+D | BHV 2018

1 1 Leibniz 102 Universität 1004 Hannover

Misalignment – Time Sequence October 2013

Wind-Wave Misalignment

/ / Leibniz / 0 2 Universität 10 0 4 Hannover

Wind-Wave Occurrence & Misalignment – 10 Years

- In-line (< +/- 15°)
 => 23 %;
 Opposing (180°+/- 15°)
 => 2.5 %
 - Misalignment >15° for about 75 % of the time (53% for threshold +/-30°)
- Median Misalignment over 10 years (0.5)
 = 37°

1 1 Leibniz 1 0 2 Universität 1004 Hannover

Wind-Wave Occurrence – Directionality of storm incidents

- Storms identified by 10-min average wind > 16 m/s and > 6 hours duration over 10 years from 2004 until 2013
- Storm incidents arranged by increasing mean wind direction versus directional frequency of occurrence of wind- (left), wave direction (middle) and misalignment of wind and waves (right)
- Triangular shape of misalignment with regard to mean wind direction of storm incidents
 - => Decreasing misalignment for northern storms

Experimental Setup

Shallow-water wave basin (WMB)

- 3D wave-current basin, multidirectional wave maker consists of 72 wave paddles
- Generation of regular/irregular waves with a propagation angle of up to ±85°
- Unidirectional current with a maximum discharge of 5m³/s, perpendicular to the waves
- Modular sediment pit: 9.15m x
 6.65m x 1.20m
- Quartz sand with $d_{50} = 0.19$

A. Hildebrandt, A. Schendel, M. Welzel, T. Schlurmann | Offshore Wind R+D | BHV 2018

///Leibniz /02Universität 1004Hannover

Scour development - areal

l l Leibniz i o 2 Universität i o 4 Hannover

- Significant increase of scour depth once a current is superimposed
- With every increase of the current velocity the scouring processes resembles that under current only conditions more and more:
 - Position of maximum scour depth relocates to the upstream side of the pile
 - > Asymptotically increasing scour depth
- Large imbalance of scour depth around a pile similar to the scour pattern induced by current

Comparison to unidirectional waves

- *U_{cw}* = 0: On average 33% smaller scour depths in multidirectional waves
- 0.3 < U_{cw} < 0.6: Wave directionality leads to slightly larger scour depths
- *U_{cw}* → 1: Differences in scour depths are declining
- Multidirectional waves are less dominant, resulting in:
 - ightarrow increased influence of current
 - → larger scour depths in combined conditions

Wind-Wave Misalignment:

- Perpendicular misalignment of wind and waves with respect to +/- 15° appears for 10% of the time, while wind and waves are aligned 25% of the time
- The observed misalignment of predominantly Northern storms amounts up to 30° and increases more or less gradually until 60° for southerly storm directions
- Scouring wave-only conditions:
 - Scour depths in multidirectional waves were on average 33% smaller than those in unidirectional waves
 - Growing dependency on KC numbers with increasing wave spreading
- Scouring combined wave-current conditions:
 - Scour progresses faster over time when exposed to multidirectional than to unidirectional waves
 - Wave directionality led to slightly larger scour depths
 - Strong scour erosion volumes until approx. 1.25-1.5 x A (Jacket) and decreasing gradients beyond that area
 - Increasing global erosion volumes for increasing current

Wind-Wave Correlation/Misalignment:

- Hildebrandt, A., Schmidt, B., Steffen, M.: Wind-wave misalignment and a combination method for direction-dependent extreme incidents, (Under revision at Ocean Engineering, Elsevier -International Journal of Research and Development)
- Wave-Current induced Scouring:
 - Schendel, A., Hildebrandt, A., Goseberg, N., Schlurmann, T. (2018):
 Processes and evolution of scour around a monopile induced by tidal currents, Coastal Engineering, Vol. 139, pp. 65-84
 - Schendel A., Hildebrandt A., Schlurmann T. (2018): *Experimental* study on scour around a pile in multidirectional (spreading) random waves, Proc. of the 9th Intl. Conf. on Scour and Erosion (ICSE), Taiwan
 - Welzel M., Schlurmann T., Hildebrandt A. (2018): Scour Development and Sediment Redistribution Potential at a Jacket-Structure in combined Waves and Current, Proc. of the 9th Intl. Conf. on Scour and Erosion (ICSE), Taiwan

Leibniz

Universität Hannover

Ludwig-Franzius-Institute

for Hydraulic, Estuarine and Coastal Engineering 11 Leibniz 102 Universität 1004 Hannover

Thanks for your attention

- Scour depth represent the maximum scour depth around the pile for each time step
 - U_{cw} = Ratio of current induced velocity to wave induced velocity
 - $U_{cw} \rightarrow 0$; wave dominated regime
 - $U_{cw} \rightarrow$ 1; current dominated regime
- *U_{cw}* < 0.44: Scouring rate increases with increasing *KC* number
- *U_{cw}* > 0.50: Scouring rate decreases with increasing *KC* number

Leibniz

100 4

Universität

Hannover

1 1 Leibniz 1 2 Universität 1004 Hannover

- 3D wave-current basin, multidirectional wave maker consists of 72 wave paddles
- Generation of regular/irregular waves with a propagation angle of up to ±85°
- Unidirectional current with a maximum discharge of 5m³/s, perpendicular to the waves
- Modular sediment pit: 9.15m x 6.65m x 1.20m

Quartz sand with
$$d_{50}$$
 = 0.19 and σ_g = 1.4

Experimental Setup

- Multidirectional waves were recorded by a CERC6 wave gauge array consisting of six echosounder
- Wave and current induced flow velocities were measured by two ADVs
- Monopile foundation structure was simulated by a transparent pile
- Scour measurements were carried out by a camera system inside the pile
- Height and vantage point of camera could be adjusted to follow scour progression

Test Conditions

s = 40, narrow spreading s = 10, wide spreading 90° 90° 135° 135° 45 ° 45 ° 0 ° 180° 0 ° 0.5 Hz 0.5 Hz 1.0 Hz 1.0 Hz 225 ° 225 ° 315315 270 ° 1.5 Hz 270 ° 1.5 Hz 0.015 0.02 0.015 0.005 0.01 0.005 0.01 0 0 $S(f) [m^2 s]$ $S(f) [m^2 s]$

- Uni- and multidirectional JONSWAP wave spectra $\rightarrow KC = 3.6 - 12.5$
- Uni- and multidirectional wave spectra with identical total wave energy were generated
- Two different wave spreadings based on Mitsuyasu-type (cos2s), with s = 10 and s = 40

$$D(f,\Theta) = cos^{2s} \left\{ \frac{\Theta - \Theta_0(f)}{2} \right\}$$

- Superposition with unidirectional current, stepwise increase of current velocity after 6000 waves $\rightarrow U_{cw} = 0 - 0.74$
- 27 tests, with a fixed water level of 60cm

Leibniz

0 1004 Universität

Hannover

Influence of wave spreading

- Maximum scour depths obtained in wave only conditions as a function of KC number and spreading parameter s
- Scour depths decrease with increasing wave spreading, particularly for small values of KC
- Only limited number of data points → verification for additional spreading parameter needed

- Time scale increases significantly once a current is superimposed to the waves
- Time scale decreases with further increasing current flow velocity
 - > Faster scour progression for larger values of U_{cw}
- Time scale in unidirectional waves is slightly more dependent on U_{cw} than that in multidirectional waves

Generation of multidirectional waves

<u>Objectives:</u>

- Understanding of scouring process induced by multidirectional waves (and current)
- Systematically investigate the influence of wave spreading on the scouring process
- Improve the scour prediction by comparing the results to unidirectional wave induced scour
- JONSWAP spectra, model scale 1:75, stepwise increase of current velocity after 6000 waves
- Uni- and multidirectional wave spectra with identical total wave energy
- Different wave spreading based on Mitsuyasu-type (cos2s), s =10 and s = 50

t	Number of waves N	Spetral wave height H _{m0}	Peak wave period T _p	Keulegan- Carpenter number <i>KC</i>	Maximum orbital velocity at the bed U_w	Undistur- bed current velocity (at 10cm) <i>U_c</i>	Combined wave- current velocity <i>U_{cw}</i>	Shields parame- ter θ	Spreading parame- ter s	Maximum scour depth S _{max} /D
	[-]	[m]	[s]	[-]	[m/s]	[m/s]	[-]	[-]	[-]	[-]
	5215	0.143	1.95	3.58	0.147	-	0	0.086	8.90	0.038
8	6519	0.143	1.95	3.58	0.147	0.115	0.44	0.079	8.90	0.275
	6519	0.143	1.95	3.58	0.147	0.244	0.62	0.089	8.90	0.875
,	6519	0.143	1.95	3.58	0.147	0.421	0.74	0.147	8.90	1.375
	5183	0.159	3.56	8.81	0.198	-	0	0.086	9.21	0.213
6	6479	0.159	3.56	8.81	0.198	0.115	0.37	0.090	9.21	0.588
)	6479	0.159	3.56	8.81	0.198	0.244	0.55	0.103	9.21	1.038
)	5183	0.159	3.56	8.81	0.198	0.421	0.68	0.156	9.21	1.425
	4960	0.172	4.40	12.49	0.227	-	0	0.088	9.87	0.300
	6200	0.172	4.40	12.49	0.227	0.115	0.34	0.098	9.87	0.625
ř.	6200	0.172	4.40	12.49	0.227	0.244	0.50	0.111	9.87	1.038
4	4960	0.172	4.40	12.49	0.227	0.421	0.65	0.162	9.87	1.388
	5224	0.144	2.00	3.75	0.150	-	0	0.086	31.34	0.088
,	4951	0.158	3.56	8.72	0.196	-	0	0.085	43.50	0.238
1	4974	0.171	4.55	12.74	0.224		0	0.086	31.26	0.413

èst coi	nditions and	maximum scour	depths for n	nultidirectional	(short-crested)	wave experi	iments.
-1	Deals	Vaulaaan	Master	Lin distant	Combined	Chialda	Conner

<u>Objectives:</u>

- Understanding of scouring process induced by multidirectional waves (and current)
- Systematically investigate the influence of wave spreading on the scouring process

Improve the scour prediction by comparing the results to unidirectional wave induced scour

Comparison to unidirectional (long-crested) waves

- Reduction of scour depths in multidirectional waves by (hypothesis!):
 - Smaller concentration of erosion potential in main wave direction
 - Reduction of accumulation effects of a recurring, bidirectional vortex system
- > Multidirectional waves are less dominant
 - ightarrow increased influenced of current
 - ightarrow larger scour depth in combined

Wave directionality does affect the scour development!

For $U_{cw} > 0.7$ depths approach current value \rightarrow conservative assumption for design

Scour development - Multidiretional waves

Paper 01: Schendel et al. (2015)

