

Effects of the Support Structure Design on the Economic Viability of Offshore Wind Projects: an Interdisciplinary Analysis

C. Hübler¹, J.-H. Piel^{2,3}, C. Stetter^{2,3}, C.G. Gehardt¹, M.H. Breitner² and R. Rolfes¹

¹ Institute for Structural Analysis - Leibniz University Hanover - c.huebler@isd.uni-hannover.de
² Information Systems Institute - Leibniz University Hanover - piel@iwi.uni-hannover.de
³ Nefino GmbH i.G. - jan-hendrik.piel@nefino.de

l Leibniz 2 Universitä 4 Hannover

Motivation

Engineering aspects

- Offshore wind energy is not yet competitive at current electricity market prices
- "Better" turbines are not always more cost-competitive
- Interdisciplinary optimization is needed

Economic aspects

.eibniz

Universität Hannover

ForWind Energy Research

Outline

- Introduction
- Engineering model
- Economic model
- Test case
- Results
- Conclusions

Leibniz

Universität Hannover

15 November 2018 Slide 3

Introduction - Objectives

What is the effect of structural design variations on the economic viability of offshore wind farm projects?

- ⇒ Combine engineering model with economic model
 - Use outputs of the engineering model as inputs for the economic model
- \Rightarrow Probabilistic approach
 - Use scattering environmental conditions to determine lifetime distribution
 - Use scattering wind conditions as well as lifetimes to determine distributions of key performance indicators

Engineering model (1/3)

15 November 2018

Slide 6

Leibniz

Engineering model (2/3)

--- FINO1

25

20

FINO2

FINO3

30

Lifetime-model:

- Load time series
- Calculated stresses
- Hotspot stresses
- Rainflow counting
- S-N curve

0.1

0.08

0.06

0.04

0.02

0 [⊾]

5

Probability density

Lifetime calculation

10

ForWind Center for Wind Energy Research

Leibniz

10

00

Universität

Hannover

DNV: DNVGL-RP-0005:2014-06 "RP-C203: Fatigue design of offshore steel structures", RECOMMENDED PRACTICE. EC3: European Committee for Standardization. (2005). Eurocode 3: Design of steel structures - Part 1-9.

15 November 2018 Slide 7

15

Wind speed in m s⁻¹

Engineering model (3/3)

Economic model (1/2)

Economic viability model:

Discounted cash flow calculation:

- For calculation of profitability and financial viability key performance indicators
- Is solved 10.000 times in Monte Carlo Simulation

Leibniz

Universität Hannover

Economic model (2/2)

eibniz

Universität Hannover

Investment criteria:

- 1. Profitable (investors)
- 2. Financially viable (debt capital providers)

15 November 2018 Slide 11

Unchanged engineering reference case:

NREL 5MW Turbine

Test case (1/2)

- OC3 Monopile
 - Changes in diameters and wall thicknesses of the monopile
- FINO3 environment
- OC3 soil

Unit	Value
ms ⁻¹	11.4
%	5.27
-	0.0964
0	239
m	1.65
S	7.03
0	246
	Unit ms ⁻¹ % - ° M S o

	Abbre- viation	Change in diameter	Change in wall thickness
Reference	Ref		
Increased diameter	D+	+1%	
Reduced diameter	D-	-1%	
Increased thickness	t+		+2%
Reduced thickness	t-		-2%
Durable (Dur)	Dur	+1%	+2%
Cheap (Chp)	Chp	-1%	-2%

Leibniz Universität Hannover

Test case (2/2)

Deterministic reference investment data:

- Cost data is derived from Reimers and Kaltschmitt (2014)
- The financing data is oriented towards Prognos and Fichtner (2013)
- The tax data refers to the German tax legislation

Parameter	Unit	Value	Distribution	Remarks
Capacity	MW	400	Deterministic	-
Wind resource	m/s	-	Weibull	FINO3 data, same as for the engineering model
Project duration	years	-	Empiric	Result of the engineering model
OW farm efficiency	%	74	Deterministic	-
Corporate tax	%	31	Deterministic	-
Cost of debt	%/a	3.5	Deterministic	-
Unlevered cost of capital	%/a	5.6	Deterministic	-
Capital expenditures	M€	994	Deterministic	Without substructure costs
Operation expenditures	M€	24	Deterministic	-
Decommissioning expenditures	M€	40.8	Deterministic	-

Prognos AG and Fichtner, Kostensenkungspotenziale der Offshore-Windenergie in Deutschland, Tech. rep., Stiftung Offshore-Windenergie (2013). B. Reimers, M. Kaltschmitt, Kostenentwicklung der Offshore-Windstromerzeugung - Analyse mithilfe der Erfahrungskurventheorie. Zeitschrift für Energiewirtschaft 38 (4) (2014) 217-234

15 November 2018 Slide 12

Leibniz

Results - Engineering part

	Abbre- viation	Substructure costs in MEUR	Mean lifetime in years	5 th -percentile lifetime in years
Reference	Ref	2.84	23.4	20.0
Increased diameter	D+	2.87 (+1.1%)	26.6 (+13.9%)	22.6 (+12.8%)
Reduced diameter	D-	2.81 (-1.1%)	22.7 (-3.1%)	20.2 (+0.8%)
Increased thickness	t+	2.88 (+1.3%)	26.7 (+14.2%)	23.3 (+16.5%)
Reduced thickness	t-	2.80 (-1.3%)	21.0 (-10.1%)	17.7 (-11.3%)
Durable (Dur)	Dur	2.91 (+2.5%)	30.2 (+29.2%)	26.8 (+34.2%)
Cheap (Chp)	Chp	2.88 (-2.3%)	17.3 (-26.0%)	14.9 (-25.6%)

15 November 2018 Slide 13

Results - Economic part

Unlimited lifetime (limitation by substructure lifetime)

Leibniz

00

Universität

Hannover

Lifetime limited to 20 years

Conclusions

- Only substructure was modified ⇒ other components should follow
- Only design variations, no complete new designs
- Only substructure lifetime ⇒ unrealistic lifetime extensions?
- No insurances are considered
- \Rightarrow A lot of work to do (Project proposal InterWind)

.eibniz

Hannover

Thank you for your attention!

C. Hübler¹, J.-H. Piel^{2,3}, C. Stetter^{2,3}, C.G. Gehardt¹, M.H. Breitner² and R. Rolfes¹

¹ Institute for Structural Analysis - Leibniz University Hanover - c.huebler@isd.uni-hannover.de
² Information Systems Institute - Leibniz University Hanover - piel@iwi.uni-hannover.de
³ Nefino GmbH i.G. - jan-hendrik.piel@nefino.de

15 November 2018 Slide 16

eibniz