

New methods to detect extreme waves in quality controlled in-situ measurements

Offshore Wind R&D Conference, 14.-15.11.2018, Bremerhaven

Mayumi Wilms, Kai Herklotz

HYDROGRAPHIE

- 1. Project background, BSH work packages
- 2. Data quality control
- 3. Detection of spikes and extreme waves preliminary results
- 4. Conclusion & next steps

 \rightarrow How to differentiate spikes from extreme waves?

Background RAVE Offshoreservice Project

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

**

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

Sea state parameters which are tested:

- Wave data
- Sea state spectra
- Aggregated data
 - Significant wave height, peak period, ...

Data quality control (near real-time)

#	Wave data
1 – 3	Date, Location, Completeness
4	Buoy status
5	Spikes
6	Range
7	Gradient
8	Flat line
9	Offset
10	Wandering mean

New methods to detect extreme waves in quality controlled in-situ measurements

- Spike \rightarrow |value mean| \geq (4 + i*0.1) * std
- Moving window method

Detection of spikes

- window width 200 s
- step width 100 s
- Replace spikes with linear interpolated values
- While loop until spike free

SEESCHIFFFAHRT

HYDROGRAPHIE

UND

• Freak wave $\rightarrow a_C / H_S \ge 1.25$ (Haver, 2000)

Definition of geometrical wave parameters

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

Dimensionless parameters

Wave steepness

 $S_7 = H/L$

Horizontal asymmetry $\mu_H = a_C/H$

Definition of Hilbert parameters

15. November 2018

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

Summary of preleminary results:

- Moving window method is a significant improvement to detect spikes, but it is not infallible
- Geometrical and instantaneous parameters are valuable additional information to distinguish between spikes and freak waves

Next steps:

- Further analysis and comparison with neighbouring sensors
- Developing and implementing longterm quality control tests
- Further development of web portal for sea state data centre

Thank you!

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

Bundesministerium für Wirtschaft und Energie

Mayumi Wilms

Mayumi.Wilms@bsh.de Tel. +49(0)40 3190-3288

Kai Herklotz

Kai.Herklotz@bsh.de Tel. +49(0)40 3190-3230

 Haver, S. & Andersen, O. J. (2000): Freak Waves: Rare Realizations of a Typical Population Or Typical Realizations of a Rare Population? *The Tenth International Offshore and Polar Engineering Conference.* Seattle, Washington, USA: International Society of Offshore and Polar Engineers.

Wilms, Mayumi L. (2017): Criteria of wave breaking onset and its variability in irregular wave trains. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2017, xxxi, 183 S. DOI: https://doi.org/10.15488/3520