

Comparing a Jacket Substructure with Suction Bucket Foundation to a Pile Foundation

Andreas Ehrmann¹, Klaus Thieken²,

Raimund Rolfes¹, Martin Achmus²

¹Institute of Structural Analysis | ²Institute for Geotechnical Engineering Leibniz Universität Hannover

Offshore Wind R&D Conference 2015 in Bremerhaven (13th – 15th October)

Contents

- 1 Introduction
- 2 Jacket Design
- **3 Soil Structure-Interaction**
- 4 Comparison Study
- 5 Summary and Conclusions

Research project "WindBucket" (OVERDICK design)

1 Introduction

- Alternative to pile foundation
- Reducing pile driving noise
- Accelerated installation process
- Only one installation step (instead of piling, settling and grouting)
- No pile driving template necessary
- Prototype installed in 2014/2015 (OWF Borkum Riffgrund)

Suction Bucket Jacket in the OWF Borkum Riffgrund (DONG ENERGY)

2 Jacket Design 2.1 General Assumptions

- 4-leg jacket with 4 bays
- Water depth 40 m (soil-structure-interaction considered at -38 mLAT)
- Footprint 25 m, headprint 10 m, transition piece bottom at +20 mLAT

2 Jacket Design 2.1 General Assumptions

- 4-leg jacket with 4 bays
- Water depth 40 m (soil-structure-interaction considered at -38 mLAT)
- Footprint 25 m, headprint 10 m, transition piece bottom at +20 mLAT
- Loads from 5 MW turbine (NREL)
- 50-year extreme wave and 50-year extreme wind
- Tower geometry and rotor-nacelleassembly (RNA) considered for modal analysis

2 Jacket Design 2.2 Foundation Assumptions

Model configurations:

- I: Jacket bottom fixed (clamped at -38 mLAT)
- II: Jacket with pile foundation (K_{ssl} at -38 mLAT)
- III: Jacket with suction buckets (K_{ssi} at -38 mLAT)
- Different stiffness matrices K_{ssi} regarding ULS & FLS loads and pressure & tension loads
- Inertia effects are not considered

2 Jacket Design 2.2 Steel Verifications

- Steel verifications according to DNV-GL and Eurocode 3
- Tower bottom loads combined with wave loads
 - Multi-directional (0 deg, 22.5 deg, 45 deg, ..., 360 deg), equally aligned
- Ultimate limit state (50-year recurring events)
 - Reduced wind + maximum wave} & {maximum wind + reduced wave}
 - Ultimate stress (normal, shear & equivalent stress) and column buckling

2 Jacket Design 2.2 Steel Verifications

- Steel verifications according to DNV-GL and Eurocode 3
- Tower bottom loads combined with wave loads
 - Multi-directional (0 deg, 22.5 deg, 45 deg, ..., 360 deg), equally aligned
- Ultimate limit state (50-year recurring events)
 - Reduced wind + maximum wave} & {maximum wind + reduced wave}
 - Ultimate stress (normal, shear & equivalent stress) and column buckling
- Fatigue limit state (related to 20 year lifetime)
 - Damage equivalent loads (DEL) at tower bottom
 - Fatigue waves according to scatter diagram distribution
 - Nominal stress concept (fatigue classes 71 MPa + 90 MPa)
- Modal analysis (eigenfrequencies)

3 Soil-Structure-Interaction 3.2 Numerical Simulation

- Drained conditions
- Hardening Soil-small model (HS-small)
- Stress-dependent soil stiffness $E_{oed} = 50000 \frac{kN}{m^2} \cdot \left(\sigma'_m / 100 \frac{kN}{m^2} \right)^{0.55}$

Bucket foundation (PLAXIS3D)

3 Soil-Structure-Interaction 3.3 Determination of stiffness matrix (i)

- trix (i) Institut für statik IGETH Institut für Geotechnik
- Support node representing foundation elements (at -38 mLAT)
- 6 x 6 stiffness matrix (GUYAN reduction)
- Determination of relevant entries (co-directional consideration)

3 Soil-Structure-Interaction 3.3 Determination of stiffness matrix (i)

- atrix (i) Institut für Geotechnik
- Support node representing foundation elements (at -38 mLAT)
- 6 x 6 stiffness matrix (GUYAN reduction)
- Determination of relevant entries (co-directional consideration)
- Relevant coupling with vertical component

$$K_{x\phi} = \frac{H_4 - H_1}{\theta_2 - \theta_1} [kN/rad] \qquad K_{xz} = \frac{H_5 - H_1}{z_2 - z_1} [kN/m] \qquad K_{z\phi} = \frac{V_4 - V_1}{\theta_2 - \theta_1} [kN/rad]$$
$$K_{\phi x} = \frac{M_3 - M_1}{y_2 - y_1} [kNm/m] \qquad K_{zx} = \frac{V_3 - V_1}{y_2 - y_1} [kN/m] \qquad K_{\phi z} = \frac{M_5 - M_1}{z_2 - z_1} [kNm/m]$$

4 Comparison Study 4.1 Ultimate Stress and Buckling (i)

Bucket foundation vs. bottom fixed

- Higher utilized mudbrace
- Lower utilized diagonal braces of top bay

4 Comparison Study 4.1 Ultimate Stress and Buckling (i)

Bucket foundation vs. bottom fixed

- Higher utilized mudbrace
- Lower utilized diagonal braces of top bay
- Lower utilized diagonal braces of bottom bay
- Higher utilized jacket legs

 $\begin{array}{l} \rho_{\text{bucket}} \ /\rho_{\text{fixed}} \leq 0.90 \\ \rho_{\text{bucket}} \ /\rho_{\text{fixed}} = 1.00 \\ \rho_{\text{bucket}} \ /\rho_{\text{fixed}} \geq 1.10 \end{array}$

4 Comparison Study 4.1 Ultimate Stress and Buckling (ii)

Bucket foundation vs. pile foundation

- Lower utilized diagonal braces of bottom bay
- Lower utilized mudbrace

Offshore Wind R&D Conference © ForWind 13.-15.10.2015, Bremerhaven

 $\rho_{\text{bucket}} / \rho_{\text{pile}} \le 0.80$

 $\rho_{\text{bucket}} / \rho_{\text{pile}} = 1.00$

 $\rho_{\text{bucket}} / \rho_{\text{pile}} \ge 1.25$

4 Comparison Study 4.1 Ultimate Stress and Buckling (ii)

Bucket foundation vs. pile foundation

- Lower utilized diagonal braces of bottom bay
- Lower utilized mudbrace
- Lower utilized jacket legs in height of bottom bay
- Higher utilized diagonal braces of the second bottom bay
- Higher utilization at connection legs with buckets

 $\begin{array}{l} \rho_{\text{bucket}} \ /\rho_{\text{pile}} \leq 0.90 \\ \rho_{\text{bucket}} \ /\rho_{\text{pile}} = 1.00 \\ \rho_{\text{bucket}} \ /\rho_{\text{pile}} \geq 1.10 \end{array}$

For Wind Zentrum für Windenergieforschung

4 Comparison Study 4.2 Fatigue Stress (i)

Bucket foundation vs. bottom fixed

- Higher utilized diagonal braces of bottom bay
- Higher utilized mudbrace

4 Comparison Study 4.2 Fatigue Stress (ii)

Bucket foundation vs. pile foundation

- Higher utilized diagonal braces of bottom bay
- Lower utilized mudbrace

4 Comparison Study 4.3 Eigenfrequencies

Bucket foundation vs. pile founda tion (vs. bottom fixed)

- First three eigenfrequencies are nearly identical
- Bucket foundation is slightly softer than pile foundation

Eigenfrequency/ eigenmode		Bucket	Pile Foundation		Fixed Foundation	
		EF (Hz)	EF (Hz)	∆EF (%)	EF (Hz)	∆EF (%)
1.	1.gl.bending EM (s-s)	0.3377	0.3379	0.1	0.3439	1.8
2.	1.gl.bending EM (f-a)	0.3386	0.3388	0.1	0.3450	1.9
3.	1.torsional EM	1.4101	1.4194	0.7	1.4222	0.9
4.	2.gl.bending EM (s-s)	1.9779	2.0666	4.5	2.2714	14.8
5.	2.gl.bending EM (f-a)	2.0151	2.1147	4.9	2.3439	16.3

5 Summary and Conclusions

- Potential weight saving in the lower jacket part for the ULS verification (mudbrace, diagonal braces and legs of the lower bay)
- Potential weight saving of the mudbrace for the FLS verification, however weight increase for diagonal braces of the lower bay, otherwise no significant variations
- Bucket foundation reacts slightly softer to first couple of eigenfrequencies than pile foundation

5 Summary and Conclusions

- Potential weight saving in the lower jacket part for the ULS verification (mudbrace, diagonal braces and legs of the first bay)
- Potential weight saving of the mudbrace for the FLS verification, however weight increase for diagonal braces of the lower bay, otherwise no significant variations
- Bucket foundation reacts slightly softer to first couple of eigenfrequencies than pile foundation
- Results only apply to the considered geometries of jacket, bucket and pile as well as to the environmental and turbine conditions!
- The study has to be continued (with an integrated dynamic simulation) to obtain general statements concerning suction bucket foundations!

Thank you for your attention! Vielen Dank für Ihre Aufmerksamkeit!

