

STANDARDIZED ASSESSMENT OF METEOROLOGICAL DATA FROM FINO PLATFORMS

F. Bégué¹, I. Bastigkeit⁴, T. Leiding², S. Müller⁵, T. Neumann¹, P. Schwenk³, B. Tinz²

¹UL International GmbH – DEWI, ²Deutscher Wetterdienst, ³DNV GL, ⁴Fraunhofer IWES, ⁵Wind-Consult

RAVE-Conference, 13. – 15.10.2015, Bremerhaven

Content

- 1) Introduction FINO-Wind research project
- 2) Faster availability Data quality check with Validatf
- 3) Better data Wind speed correction for FINO1, 2 and 3 mast effects
- 4) Outlook Wake field situations at FINO1, 2 and 3
- 5) Conclusions

1) FINO-Wind research project

 funded by Federal Ministry for Economic Affairs and Energy and Projektträger Jülich

- December 2012 April 2016
- joint research project, coordinated by **Deutscher Wetterdienst**

Project homepage: http://www.dwd.de/fino-wind

1) FINO-Wind research project

- develop standards to validate wind data
 from the FINO masts → quality validation tool
- estimate external influences
- to improve the comparison of the wind conditions measured at these platforms
- to establish a consistent archive of the data in the FINO database of the Federal Maritime and Hydrographic Agency (BSH)

- will improve the knowledge of the marine ambient conditions at the three locations
- to develop proposals how to design measurement structures and analysis methods accordingly

Content

- 1) Introduction FINO-Wind research project
- 2) Faster availability Data quality check with Validatf
- 3) Better data Wind speed correction for FINO1, 2 and 3 mast effects
- 4) Outlook Wake field situations at FINO1, 2 and 3
- 5) Conclusions

2) Faster availability – Data quality check with *Validatf*

Validat

- new comprehensive quality checking routine
- is subdivided into separate modules with ever more stringent criteria, separated for every element

History:

- originally developed and operationally used by the DWD since years to validate marine meteorological data
- system based on the high quality control tool (hqc) as well as on a data validation and data completion system
- project FINO-Wind provided new challenges
 - → Validat has been completely revised and adjusted to the new purposes of profile measurements: Validatf

Checking Routine Validatf

- value range depends on the element in question, defined beforehand in an external configuration file
- after the successful completion of every sequence, the data are assigned standardized quality flags

Figure: Sequence of data validation checks in Validatf

Validatf - Modules

- Formal check: Are there any forbidden characters?
 - ✓ value ranges are valid worldwide

```
wind direction 0 ... 360°
wind speed 0 ... 60 m/s
air temperature -50 ... 60° C
air pressure 860 ... 1055 hPa
```

- Climatological check: Is the value reasonable with regard to climate range of the area?
 - ✓ based on 30-year climatology of ERA*-Interim reanalysis
 - ✓ climatology boundaries defined for every parameter, geographical position of the platform and month of the year

#	Min	Max	Avg	Stdd	DateMin	DateMax
01	-87	112	41	3.14	19870111	20070109
02	-68	106	36	2.94	19960209	20020202
03	-48	128	49	2.35	19870304	19890328

^{*)} ERA-Interim is a global atmospheric reanalysis from 1979 to present. It is produced with a 2006 version of the IFS (Cy31r2) and continues to be updated in real time [source:

Modules of Validatf

- Temporal check
- √ reveals outliers
- ✓ at least three fixed-date values are needed

Figure: example of temporal check: relative humidity in heights of 30 m and 50 m show significant outliers.

Modules of Validatf

Repetition check

- ✓ examine whether a value remains unchanged over an unusual long period of time
- ✓ two limits are defined:

REPEAT1: possible irregularities

REPEAT2: values are flagged as wrong

Figure: example of repetition check: Icing of cup anemometers at different heights.

Modules of Validatf

Consistency check

- ✓ a number of sub-checks is performed to verify the different elements against each other in various combinations and for different criteria
- ✓ based on general principles of physics
- ✓ for example: dew point is not allowed to be higher than the air temperature

Content

- 1) Introduction FINO-Wind research project
- 2) Faster availability Data quality check with Validatf
- 3) Better data Wind speed correction for FINO1, 2 and 3 mast effects
- 4) Outlook Wake field situations at FINO1, 2 and 3
- 5) Conclusions

3) Better data – Wind speed correction for FINO1, 2 and 3 mast effects

Development of a wind speed correction matrix

- for every degree wind direction
- and every measurement height
- for every FINO platform
- with 5 different methods
- intensive validation of results for every FINO platform
- Determination of the correction method to be applied at each platform individually

3) Better data – Wind speed correction for FINO1, 2 and 3 mast effects

Wind tunnel measurements.

Wind speeds around the square model, normalized with the undisturbed flow.

Computational Fluid Dynamics (CFD)¹.

Calculation of wind speed reduction

[1] F. Wilts, B. Canadillas, F. Kinder, T. Neumann, CFD calculations of FINO1 mast effects, CEWE 2014, Hamburg.

Uniform Ambient Mast flow correction (UAM)².

[2] A. Westerhellweg, T. Neumann, V. Riedel, FINO1 Mast Correction, DEWI-Magazin No. 40, February 2012.

Quotient WS-LiDAR / WS-Cup at 91.5 m LAT WS-Quotient bin-average WS-Lidar(91.5 m LAT) / WS-Cup(91.5 m LAT) WD sectors for Approximation: 0°-25°, 50°-100°, 115°-170°, 185°-260°, 285°-360° considered WS range: Period: 2009-08-01 00:10 - 2010-08-01 00:00 # number of data: 35182 300 Wind Direction FINO1 91.5 m LAT / °

LiDAR measurements in comparison (ratio) with cup anemometer at the same height.

Composed wind speed method (CWM).

Triangular shaped mast at FINO3 with booms for cup-anemometers at three different directions from the mast.

15

Content

- 1) Introduction FINO-Wind research project
- 2) Faster availability Data quality check with Validatf
- 3) Better data Wind speed correction for FINO1, 2 and 3 mast effects
- 4) Outlook Wake field situations at FINO1, 2 and 3
- 5) Conclusions

4) New challenge – Wake field situations

FINO1:

Wind parks to

- east (alpha ventus, since 2010)
- south west (Borkum Riffgrund, since 2015)
- west (Trianel Borkum, since 2015)

FINO3:

Wind parks to

- east/south east (DanTysk, since 2014)
- west (Sandbank, under construction)

http://www.bsh.de/de/Meeresnutzung/Wirtschaft/CONTIS-Informationssystem/index.jsp

4) New challenge – Wake field situations at FINO2

Wind park to

south east (EnBW Baltic 2, since 2015)

Turbulence intensity at FINO1

a UL company

Project FINO-Wind provides:

- quality validation tool Validatf
- consistently checked data provided in the FINO database of BSH
- thoroughly derived mast corrections for each of the FINO masts
- initial analysis of wind park situations for each platform
- meteorological investigations based on improved data sets

THANK YOU!

