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Complex flow situation within a wind farm
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< What is the appropriate numerical model to shed light into these problems?
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===l Numerical Modeling of Wind Turbines at IAG

Fully resolved rotor (FR)
= Boundary layer of the airfoil is resolved y* ~ 1

= Turbine components are separately meshed and integrated
using the overset grid technique [1]

- Detailed view into flow phenomena around the rotor

- Accurate prediction of loads and power including unsteady
aerodynamic effects without need for further modeling

www.lag.uni-stuttgart.de

Disadvantages:
= Time consuming meshing
= High computational effort

= Only suitable for simulation of wind farms to a limited extent
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e '” Numerical Modeling of Wind Farms at IAG

Actuator Line Model (AL)

= Effect of blades on the flow modeled by a momentum source term [2]
Tower Modeled similarly as AL drag line

Aerodynamic forces: fop = %pvrzelc(cl(a)eb cq(a)ey)

= Sampling points for velocity upstream of the bound vortex,
inflow angle corrected with Biot-Savart Law

www.lag.uni-stuttgart.de

= Gaussian smearing of the forces to avoid smgulant;(es [3]
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. m’”’ Numerical Modeling of Wind Farms at IAG

Strengths of the AL
= Saves grid points
< Easy to integrate in a simple mesh

- Effect of the circulation of each blade on the flow field
can be simulated
= Velocity deficit
- root and tip vortices

= Well suited to simulate the flow field within wind farms Wtk e e 1 i
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Disadvantages:
- Uncertainties in prediction of power and loads:
< Smearing function € [4,5]
- Determination of «
- Based on 2D airfoil polars
- Can only simulate equilibrium state of flow field and loads
- Further modeling of nacelle needed
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2% 8l The Flow Solver at IAG

FLOWer (DLR)

= Block- structured solver

= Compressible Navier-Stokes equations
= Multigrid

Discretization
= Second order dual timestepping
= Second order JST (CDS + articifial damping)
= 5th order weighted essentially non-oscillatory
(WENO) schemes

www.lag.uni-stuttgart.de

Turbulence Modeling
= Classical RANS (Eddy viscosity models, RSM)
= Hybrid RANS/LES (DES97, DDES, IDDES)
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= “Half-wake”: = higher fatigue loads expected for the downstream turbine
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Operating conditions

Turbulent inflow
Precursor LES by ForWind Oldenburg with PALM
= Wind direction 262°
= Velocity at hub height: 15.2 m/s
= Turbulence intensity at hub height Ti = 2 ...4 %
= Neutral stratification
= Signal is made periodic over 60s [6]
Turbine settings of AV4 and AV5
Senvion 5M
= RPM: 12
= TSR:5.2

-IAG

Pitch angle 11.2° (all blades)

Rigid turbine model t"

AV4 AVS
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Simulations
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Turbine Model FR - JST AL — WENO

Cells 100 Mio. 67 Mio. 67 Mio.

Time step 3° azimuth 1.5° azimuth 1.5° azimuth
No. of inner 30 20 20

iterations

Pre-calculation | 36 revs. 36 revs. 36 revs.
Evaluation 60s = 12 revs. 60s = 12 revs. 60s = 12 revs.
signal

Spatial Central Central 5t order WENO
discretization differences differences

scheme (Jameson) (Jameson)
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-Vortex visualization
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e = Hub vortices less pronounced

0 = Longer preservation of the wake due to tip refinement
200 AL
=100 = Strong hub vortices
| = Earlier break up of the wake
° 5t order WENO:
e - Preservation of small scale ABL vortices for WENO
200 ; .41 = Higher vorticity values for tip/root vortices
X [m] 2 . Highly turbulent ABL — Wake — Turbine interaction
Institute of Aerodynamics Offshore Wind R&D Conference 2015
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e Horizontal wake deficit and turbulence intensity
b T Xy ava/R = —1 Xy ava/R =1 Xy ava/R = 2 Xy ava/R =4 Ti [%]
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Upstream of AV4: Downstream of the AV4:
- Quite good agreement of the upstream flow - Good agreement of AL with FR, except for the hub
conditions for all models region, due to missing nacelle model
= WENO predicts slightly higher Ti - Higher Ti in the hub region for AL, since hub vortices are
stronger
= In general, higher Ti predicted by WENO
Institute of Aerodynamics Offshore Wind R&D Conference 2015
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sem s Horizontal wake deficit and turbulence intensity
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Upstream of A_V_5: _ Downstream of AV5:

= Largest deficit predicted by FR = Overall, good agreement for AL, however stronger wake

= Negligible influence of higher order WENO deflection predicted by FR

scheme on mean velocity deficit
= However, WENO can preserve turbulence better!
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= AV5: Power loss 15% compared to AV4

= AL predicts 4% less power for AV4 and 0.4% less
power for AV5 compared to FR

<fnrarmal
G(f:lormt-ll)

Overall, good agreement of AL with FR for loads
and their fluctuations

- Disagreement at the inner portion of the blade:
= 3D flow separation
= Inaccuracies of the airfoil polars for AL

L 1 L 1
L J
———— AV4FR-JST
——— AV4ALJST |
———— AV4 AL-WENO |
AV5 FR-JST
AV5 AL-JST |
AV5 AL-WENO |
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— "" Conclusions

Numerical simulations were performed of a ,half-wake" situation in Alpha Ventus

= Different numerical models were compared
= Fully resolved turbine
= Actuator line model
= Higher order scheme

= Qverall, good agreement of AL model and FR for wake development and loads

www.lag.uni-stuttgart.de

= Higher order WENO scheme significantly improves resolution of the interaction of the
wake and the atmospheric turbulence

= Numerical dissipation remains the main problem for the convection of the wake!
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Thank you for your attention!
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Overset grids for FR simulation

Tower + background mesh for tower:
Spinner:

Blades + blade connectors:

Vortex transport meshes:
Background mesh:

2 X 3.8 Mio.
2 X 1.6 Mio.
6 X 4.9 Mio.
12.7 Mio.
47 Mio.

- Total No. of cells:

www.lag.uni-stuttgart.de

100 Mio.
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SR Grid for AL simulation

2 Simple mesh configuration
% = Refinement around the turbine 2 x 10.0Mio.
oy = Background mesh: 47 Mio.
% > Total No. of cells: 67 Mio.
g = Aerodynamic forces calculated at 97 actuator points
o)
Y
= i ' | ' | ' j
= 300 | b
; i i
200 -
| ]
E | 3——‘\ 1
4 T of T\ -
- B | ]
-100 E \“/’LS D \ E
200 :_ I l do PR P | B P A O O _L
-200 0 200 400 600 800 1000 1200

X [m]

Institute of Aerodynamics Offshore Wind R&D Conference 2015 29
and Gas Dynamics Bremerhaven, 10/13/15



B

Wake development — velocity
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X [m] x [m]
T [ . FR:
I e oeortees TR : = Hub vortices less pronounced
= ~ 1 = Deceleration in the hub region
g 4 = Significant wake deflection downstream of AV5
g 1 AL:
g o r .jet” in the hub reagion due to missing nacelle model
3 R 1 = Smaller wake deflection downstream of AV5
2 . -~ 4 5" order WENO:
£ o 1 = Improved resoultion of wake and ABL turbulence,
a0 o =m0 mg w0 =0 oo o particularly for the wake interaction with the AV5
-IAG
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M \/ortex convection

FR JST

Vorticity Magnitude: 0 0.0005 0.001 0.0015 0.002 00025 0.003
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Problem vortex dissipation:
= As soon as tip/root vortices run out
refined meshes

= Vorticity decreases to the order of the

ambient turbulence

= Tip/root vortices interact with the

ambient turbulence

< Premature break up of the wake

- Always look critically at your numerical model!
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