

Bremerhaven, October 13th, 2015

Pascal Weihing, Thorsten Lutz

{weihing, lutz}@iag.uni-stuttgart.de

Contents

- Motivation
- Numerical wind turbine/farm model
- Test case and setup
- Results
- Conclusions

Motivation

Complex flow situation within a wind farm

Turbulent atmospheric inflow

Research Questions:

- Wake development of the upstream turbine
- Flow conditions at the downstream turbine which highly influence
 - Power output
 - Loads
 - Wake development

What is the appropriate numerical model to shed light into these problems?

Numerical Modeling of Wind Turbines at IAG

Fully resolved rotor (FR)

- Boundary layer of the airfoil is resolved $y^+ \approx 1$
- Turbine components are separately meshed and integrated using the overset grid technique [1]
- Detailed view into flow phenomena around the rotor
- Accurate prediction of loads and power including unsteady aerodynamic effects without need for further modeling

Disadvantages:

- Time consuming meshing
- High computational effort
- → Only suitable for simulation of wind farms to a limited extent

Numerical Modeling of Wind Farms at IAG

Actuator Line Model (AL)

- Effect of blades on the flow modeled by a momentum source term [2]
- Tower Modeled similarly as AL drag line

- Sampling points for velocity upstream of the bound vortex, inflow angle corrected with Biot-Savart Law
- Gaussian smearing of the forces to avoid singularities [3]

$$f = f_{2D} \otimes \eta_{\epsilon,3D}, \quad \eta_{\epsilon,3D} = \frac{1}{\epsilon^3 \pi^{3/2}} \exp\left[-\left(\frac{d}{\epsilon}\right)^2\right]$$

 d_{Samp}

Numerical Modeling of Wind Farms at IAG

Strengths of the AL

- Saves grid points
- → Easy to integrate in a simple mesh
- Effect of the circulation of each blade on the flow field can be simulated
 - → Velocity deficit
 - root and tip vortices
- Well suited to simulate the flow field within wind farms

Disadvantages:

- Uncertainties in prediction of power and loads:
 - \rightarrow Smearing function ϵ [4,5]
 - \rightarrow Determination of α
 - → Based on 2D airfoil polars
- → Can only simulate equilibrium state of flow field and loads
- → Further modeling of nacelle needed

The Flow Solver at IAG

FLOWer (DLR)

- Block- structured solver
- Compressible Navier-Stokes equations
- Multigrid

Discretization

- Second order dual timestepping
- Second order JST (CDS + articifial damping)
- 5th order weighted essentially non-oscillatory (WENO) schemes

Turbulence Modeling

- Classical RANS (Eddy viscosity models, RSM)
- Hybrid RANS/LES (DES97, DDES, IDDES)

Test Case and Setup

→ "Half-wake": → higher fatigue loads expected for the downstream turbine

Operating conditions

Turbulent inflow

Precursor LES by ForWind Oldenburg with PALM

- Wind direction 262°
- Velocity at hub height: 15.2 m/s
- Turbulence intensity at hub height Ti $\approx 2 ... 4 \%$
- Neutral stratification
- Signal is made periodic over 60s [6]

Turbine settings of AV4 and AV5 Senvion 5M

RPM: 12TSR: 5.2

Pitch angle 11.2° (all blades)

Rigid turbine model

Simulations

Turbine Model	FR – JST	AL – JST	AL – WENO
Cells	100 Mio.	67 Mio.	67 Mio.
Time step	3° azimuth	1.5° azimuth	1.5° azimuth
No. of inner iterations	30	20	20
Pre-calculation	36 revs.	36 revs.	36 revs.
Evaluation signal	60s = 12 revs.	60s = 12 revs.	60s = 12 revs.
Spatial discretization scheme	Central differences (Jameson)	Central differences (Jameson)	5 th order WENO

Results Flow field and Wake Development

Λ_2 -Vortex visualization

Vortex convection

FR:

- Hub vortices less pronounced
- Longer preservation of the wake due to tip refinement

AL:

- Strong hub vortices
- Earlier break up of the wake

5th order WENO:

- Preservation of small scale ABL vortices for WENO
- Higher vorticity values for tip/root vortices
- Highly turbulent ABL Wake Turbine interaction

Horizontal wake deficit and turbulence intensity

Upstream of AV4:

- Quite good agreement of the upstream flow conditions for all models
- WENO predicts slightly higher Ti

Downstream of the AV4:

- Good agreement of AL with FR, except for the hub region, due to missing nacelle model
- Higher Ti in the hub region for AL, since hub vortices are stronger
- In general, higher Ti predicted by WENO

Horizontal wake deficit and turbulence intensity

Upstream of AV5:

- Largest deficit predicted by FR
- Negligible influence of higher order WENO scheme on mean velocity deficit
- However, WENO can preserve turbulence better!

Downstream of AV5:

 Overall, good agreement for AL, however stronger wake deflection predicted by FR

Results Blade Loads

Normal and tangential blade force

- AV5: Power loss 15% compared to AV4
- AL predicts 4% less power for AV4 and 0.4% less power for AV5 compared to FR
- Overall, good agreement of AL with FR for loads and their fluctuations
- Disagreement at the inner portion of the blade:
 - 3D flow separation
 - Inaccuracies of the airfoil polars for AL

Conclusions

- Numerical simulations were performed of a "half-wake" situation in Alpha Ventus
- Different numerical models were compared
 - Fully resolved turbine
 - Actuator line model
 - Higher order scheme
- Overall, good agreement of AL model and FR for wake development and loads
- Higher order WENO scheme significantly improves resolution of the interaction of the wake and the atmospheric turbulence
- Numerical dissipation remains the main problem for the convection of the wake!

References

- [1] Buningt, P. G. (1985). A 3-D chimera grid embedding technique.
- [2] Sorensen, J. N., & Shen, W. Z. (2002). Numerical modeling of wind turbine wakes. Journal of fluids engineering, 124(2), 393-399.
- [3] Mikkelsen, R. (2003). Actuator disc methods applied to wind turbines (Doctoral dissertation, Technical University of Denmark).
- [4] Martinez, L. A., Leonardi, S., Churchfield, M. J., & Moriarty, P. J. (2012). A comparison of actuator disk and actuator line wind turbine models and best practices for their use. AIAA Paper, (2012-0900).
- [5] Jha, P. K., Churchfield, M. J., Moriarty, P. J., & Schmitz, S. (2013). Accuracy of State-of-the-Art Actuator-Line Modeling for Wind Turbine Wakes. AIAA Paper, (2013-0608).
- [6] Meister, K., Lutz, T., & Krämer, E. (2014, December). Simulation of a 5MW wind turbine in an atmospheric boundary layer. In Journal of Physics: Conference Series (Vol. 555, No. 1, p. 012071). IOP Publishing.

Thank you for your attention!

Overset grids for FR simulation

•	Tower + background mesh for tower:	2×3.8 Mio.
	Spinner:	2×1.6 Mio.
	Blades + blade connectors:	$6 \times 4.9 Mio.$
	Vortex transport meshes:	12.7 <i>Mio</i> .
	Background mesh:	47 Mio.

Background mesh:

→ Total No. of cells:

100 *Mio*.

Grid for AL simulation

Simple mesh configuration

Refinement around the turbine

 $2 \times 10.0 Mio.$

Background mesh:

47 Mio.

→ Total No. of cells:

67 Mio.

Aerodynamic forces calculated at 97 actuator points

Wake development – velocity

FR:

- Hub vortices less pronounced
- Deceleration in the hub region
- Significant wake deflection downstream of AV5

AL:

- "jet" in the hub reagion due to missing nacelle model
- Smaller wake deflection downstream of AV5

5th order WENO:

 Improved resoultion of wake and ABL turbulence, particularly for the wake interaction with the AV5

Vortex convection

Problem vortex dissipation:

- As soon as tip/root vortices run out refined meshes
- Vorticity decreases to the order of the ambient turbulence
- Tip/root vortices interact with the ambient turbulence
- Premature break up of the wake

