> TOWARDS IMPROVED FATIGUE CRACK GROWTH MODELS: OVERVIEW OF THE FELOSEFI PROJECT

TNO offshore wind research on fatigue | Ir. Sjoerd van der Putten

PRESENTATION OUTLINE

- Introduction TNO Offshore wind R&D
- > Outline FeLoSeFI project
- Preliminary results FeLoSeFI
- Conclusions

INTRODUCTION TNO – R&D ON STRUCTURES

- Structural Dynamics and Structural Reliability: 120 experts
 - Core Technologies
 - > Structural reliability
 - Structural dynamics
 - Material performance
 - Products and services
 - Modelling and simulation studies
 - On-site and offshore measurements
 - > Laboratory experiments: fatigue, fracture, shock
 - > Via contract research or (joint industry) projects

INTRODUCTION TNO - OFFSHORE (WIND) R&D

- > TNO Roadmap Offshore
- Project examples
 - > Load sequence effects for fatigue damage calculations: FeLoSeFI Project
 - Monitoring and lifetime prediction: MONITOR Joint Industry Project
 - Corrosion fatigue: Early Research Program

Estimated reduction of CAPEX up to 4.5% LCOE and/or OPEX up to 0.9% LCOE

Fatigue Life Load Sequence effects

and Failure-probability driven Inspection

- > Focus on fatigue life prediction of welded connections in Offshore Wind structures.
- > Improved fatigue model, including load sequence effects
- Improved inspection planning, with potentially extended interval

- > Partners
 - > Operator
 - Designer
 - Material supplier

NoordzeeWind
NoordzeeWind
Nuon
Keppel Verolme

Branch organization

R&D performers

OWEC TOWER AS

Background

Expected improved service life (25-50%)

FATIGUE DAMAGE PREDICTION REGULAR APPROACH

- Conservative material response data "S-N curves"
 - > number of constant amplitude stress cycles until failure

Towards improved fatigue crack growth models: overview of the FeLoSeFi project

FATIGUE DAMAGE PREDICTION ANALYTICAL CRACK GROWTH MODEL

- Modelling the effect of crack retardation/acceleration
- > Yield zone crack growth retardation region crack closure effect

TNO innovation for life

FATIGUE DAMAGE PREDICTION ANALYTICAL CRACK GROWTH MODEL

Project structure

WP1 LOAD HISTORY ALGORITHM

Identification of load events based on measurement data

PRELIMINARY RESULTS WP1

- Load history effects: Data reduction algorithm to filter relevant load sequences.
- > 10% of all fatigue damage is inflicted by roughly 97% of all cycles counted
- > 90% reduction feasible
- Identification of events

WP2 ADVANCED FATIGUE MODEL

Fundamental' understanding fatigue crack growth trough FEM and experiments
F

PRELIMINARY RESULTS WP2

Results analytical model based on FEM

WP3 EXPERIMENTAL VALIDATION

Four point bending tests and tubular T-joint tests

4 p bending fatigue specimen, heavily instrumented to monitor crack growth in detail

WP3 PRELIMINARY RESULTS

 Incidental overloads clearly show retardation effect

13 October 2015

WP4 PROBABILISTIC FAILURE MODEL

Towards improved fatigue crack growth models: overview of the FeLoSeFi project

WP4 PRELIMINARY RESULTS

WP5 INTEGRATION

Integration in design tools and design codes.

CONCLUSIONS

Estimated reduction of CAPEX up to 4.5% LCOE and/or OPEX up to 0.9% LCOE

- > The project scope and approach result in:
 - A validated fatigue crack growth model that takes load sequence effects into account resulting in a load sequence dependent bonus on the fatigue life. The model will be fed with a load history algorithm for measured and design loads. The model is based on both FEA-models and coupon and realistic size specimens;
 - A probabilistic model to calculate inspection intervals, which includes Bayesian believe techniques that account for results of (previous) inspections.
- > Retardation is caused by crack closure effects in the crack tip
- Preliminary results show a typical loading pattern with mean shifts, that are potential source to retardation effect as a result of overloads
- > New monitoring data should provide insight in typical loading in jacket structure

> THANK YOU FOR YOUR ATTENTION

PROJECT INITIATIVE CORROSION FATIGUE

- Develop a numerical toolbox aiming at the prediction and quantification of the marine conditions on the corrosion fatigue crack initiation and propagation
- Validate steel structures for wider application with specific corrosive environments
- Focus on corrosion pit development in C-Mn steel (S355) with salt water environment
- Subsea / Splash zone (offshore wind structures)
- Literature study, experimental work and numerical modelling

PROJECT INITIATIVE: MONITORING RESIDUAL LIFE

