

Advances in modeling the long-term behavior of offshore wind turbine foundations

Univ.-Prof. Dr.-Ing. habil. Th. Triantafyllidis, Dr.-Ing. T. Wichtmann, Dr.-Ing. P. Kudella Dipl.-Ing. S. Chrisopoulos, Institute for Soil and Rock Mechanics, KIT Karlsruhe Dr.-Ing. H. Zachert (former KIT, now Arcadis Deutschland GmbH)

www.kit.edu

Prof. Th. Triantafyllidis – Institute of Soil Mechanics and Rock Mechanics, KIT Advances in modeling the long-term behavior of offshore wind turbine foundations

Loading on foundations

Problems:

 High number of loading cycles from wind and wave actions (stochastic, multidirectional)

 Serviceability of the structure (limited tilting and settlements)

- Erosion effects at the interface structure / soil (shallow foundations)
- Lack of experience on the long-term behavior of such structures

HCA – High Cycle Accumulation Model

Calculation strategy: coupled "implicit" + "explicit" calculation steps

- Only a few cycles are calculated incrementally using a $\dot{\sigma}$ - $\dot{\varepsilon}$ -model
- Larger packages of cycles ∆N in between are treated like creep deformations under constant load
- input of the accumulation model: strain amplitudes ε^{ampl} from implicit cycles
- advantages: 1) no limitations with respect to possible maximum cycle numbers
 2) much smaller number of increments → numerical errors minimized

HCA – High Cycle Accumulation Model

HCA – High Cycle Accumulation Model

Intensity of accumulation

 $\dot{arepsilon}^{
m acc} = f_{
m ampl} \, \dot{f}_N \, f_p \, f_Y \, f_e \, f_\pi$

Influencing parameter	Function	Parameter
Strain amplitude <i>e</i> ^{ampl}	$f_{\rm ampl} = \left(\frac{\varepsilon^{\rm ampl}}{10^{-4}}\right)^{C_{\rm ampl}}$	C _{ampl}
Void ratio e	$f_e = \frac{(C_e - e)^2}{1 + e} \frac{1 + e_{\max}}{(C_e - e_{\max})^2}$	C _e
Average mean pressure pav	$f_p = \exp\left[-C_p \left(\frac{p^{\mathrm{av}}}{100 \mathrm{ kPa}} - 1\right)\right]$	C _p
Average stress ratio Yav	$f_Y = \exp(C_Y \bar{Y}^{\rm av})$	C _Y
Cyclic preloading (number of cycles)	$f_N = C_{N1} \left[\ln(1 + C_{N2} N) + C_{N3} N \right]$ $\dot{f}_N = C_{N1} \left[\frac{C_{N2}}{1 + C_{N2}N} + C_{N3} \right]$	$egin{array}{c} C_{N1} \ C_{N2} \ C_{N3} \end{array}$
Change of direction of cycles	f_{π}	$C_{\pi 1}, C_{\pi 2}$

Parameters of HCA model

Different ways to obtain a set of parameters (model calibration) :

- 1. Determination of all parameters from at least 11 cyclic triaxial tests with different amplitudes, initial densities and average stresses
- 2. Estimation of C_{ampl} , C_p , C_e and C_Y from correlations with d_{50} , C_u and e_{min} , determination of C_{N1} , C_{N2} and C_{N3} from a single cyclic triaxial test
- 3. Estimation of all parameters from the correlations with d_{50} , C_u and e_{min}

Prof. Th. Triantafyllidis – Institute of Soil Mechanics and Rock Mechanics, KIT Advances in modeling the long-term behavior of offshore wind turbine foundations

Parameters of HCA model

Simplified calibration based on the grain size distribution curve

Para- meter	Correlation		
C _{ampl}	$C_{\text{ampl}} = 1.70$	From about 350 cyclic triaxial	
C _e	$C_e = 0.95 \cdot e_{\min}$	tests on quartz sands with subangular grain shape and	
C _p	$C_p = 0.41 \cdot [1 - 0.34 \ (d_{50} - 0.6)]$	$0.1 \le d_{50} \le 6 \text{ mm}, 1.5 \le C_u \le 8$	
C _Y	$C_Y = 2.60 \cdot [1 + 0.12 \ln(d_{50}/0.6)]$ (= range of validity)		
C_{N1}	$C_{N1} = 4.5 \cdot 10^{-4} \cdot [1 - 0.306 \ln(d_{50}/0.6)] \cdot [1 + 3.15 (C_u - 1.5)]$		
C_{N2}	$C_{N2} = 0.31 \cdot \exp[0.39 \ (\boldsymbol{d}_{50} - 0.6)] \cdot \exp[12.3(\exp(-0.77 \ \boldsymbol{C}_u) - 0.315)]$		
C _{N3}	$C_{N3} = 3.0 \cdot 10^{-5} \cdot \exp[-0.84 \ (d_{50} - 0.6)] \cdot [1 + 7.85 \ (C_u - 1.5)]^{0.34}$		

Correlations will be extended by the influence of the grain characteristics (grain shape, surface roughness, mineralogy, etc.)

Validation of HCA model predictions

Based on small-scale model tests

- Model tests on shallow and monopile foundations (1:50) with high-cyclic loading
- Aim: Inspection of the HCA model under clearly defined boundary conditions

Prof. Th. Triantafyllidis – Institute of Soil Mechanics and Rock Mechanics, KIT Advances in modeling the long-term behavior of offshore wind turbine foundations

RAVE 2015 Bremenhaven 13.-15.10.2015

Validation of HCA model predictions

Based on large-scale model tests (1:10) at TU Berlin

- HCA model parameters of Berlin sand determined ulletbased on cyclic tests performed at IBF
- FE-Model: •

Good agreement between FE \rightarrow prediction and model test

Model test No. 4

FE simulation

Number of cycles N [10⁴]

5

6

7

2H^{ampl}

40

0

2

3

RAVE 2015 Bremenhaven 13.-15.10.2015

8

Validation of HCA model predictions

Based on full-scale test of Ed. Züblin AG on a shallow foundation with high-cyclic loading (1,5 Million cycles with different amplitudes)

- FE-model (87000 brick elements)
- Determination of HCA model parameters at IBF

Prof. Th. Triantafyllidis – Institute of Soil Mechanics and Rock Mechanics, KIT Advances in modeling the long-term behavior of offshore wind turbine foundations

→ Good agreement between FE prediction and test regarding settlement, stress redistribution and pore water pressures

- Accumulation as pseudo-creep is represented by the dashpot
- Spring represents elastic stiffness of layer

Simplified engineer-oriented models

Laminar model for a monopile based on HCA model

Comparison of different models (here: $I_{D0} = 0.6$, M/Q = 20 m)

After monotonic loading to M^{max}:

Simplified engineer-oriented models

Laminar model for a monopile based on HCA model

Comparison of different models (here: $I_{D0} = 0.6$, M/Q = 20 m)

After 100000 cycles:

Conclusions

HCA model requires:

- Cyclic triaxial tests
- Detailed determination of material parameters and soil parameters

HCA model provides:

- Very good agreement with small scale model tests on monopiles and shallow foundations (not shown here)
- Good agreement with the test foundation in real scale (settlements, PWP-development and contact pressure rearrangement)
- \Rightarrow HCA model is regarded to be validated (from model to real scale)

Advantages of HCA model against other simplified models:

- Captures the whole soil structure interaction
- Ability to investigate in detail the effects of accumulation or back rotation
- Flexible in application to conventional or new types of foundation structure or to any boundary value problem without restrictions

Thank you for your attention

RAVE 2015 Bremenhaven 13.-15.10.2015