Comparison of dual-Doppler lidar measurements and Large Eddy Simulations of an offshore wind turbine wake

L. Vollmer, M. van Dooren, D. Trabucchi, G. Steinfeld, M. Kühn

ForWind – University of Oldenburg, Institute of Physics

RAVE Offshore Wind R&D Conference 2015 Bremerhaven, October 14th, 2015

Wake losses and turbulence inside medium to large size wind farms

- Reductions of power losses and operational risk
- Quantification of interaction of maritim flow with wind farms

2

Wake losses and turbulence inside medium to large size wind farms

WP 3: Modelling and validation of flow conditions

Modelling of the wind farm flow with Large Eddy Simulations (LES)

Motivation GW Wakes

Wake losses and turbulence of medium size and large wind farms

WP 3: Modelling and validation of flow conditions

Validation of LES

- Validation with lidar measurements
- Generation of atmospheric boundary conditions

(Offline Coupling)

4

Offline Coupling

5

Offline Coupling Models

COSMO

Operational weather model

- Developed and run by DWD
- Horizontal resolution: 2.8 km
- Vertical resolution: \sim 20 40 m
- Resolves weather turbulence
- Domain: Germany
- Hourly Output

LES model

- Developed by ForWind Hannover
- Horizontal resolution: 5 m
- Vertical resolution: 5 m
- Resolves turbulence on wind turbine scale
- Domain 3.2 km x 3.2 km
- 3 Hz output

Offline Coupling Large Scale Forcing & Nudging^[1]

Validation of Wind Simulations

8

Validation of Wind Simulations

Validation of Wind Simulations

Turbulence

Comparison of 10 min TI

MuLiWEA^[2]

- Multiple LiDAR Wind Field Evaluation Algorithm
- Combination of 2 PPI scans

Measurements

- 2D Wind vector evaluation
- 10 min average on 20 m cubes around hub height

Fig: Layout alpha ventus, scan regions LiDARs

Wind Turbine AV10

- Adwen AD 5 -116
- HH = 90 m, D = 116 m

Wind turbine model

- Actuator Disc with Rotation (ADMR)^[3]
- Based on blade element theory
- Speed & pitch controller
- Yaw controller
- New: AD 5 -116

Wake Simulation

- Atmospheric conditions
- Turbulent flow
- Turbine response

Horizontal wake

Hub height wind speed between 6:10 and 6:20

- LES: Normalized by mean domain wind speed
- LiDAR: Normalized by FINO1 wind speed

Conclusion

- Offline coupling with meso-scale model allows for a representation of non-stationary conditions in LES and thus for a direct comparison with measurements
- Wind simulations fit well with FINO1 measurements at the selected day
- Wake simulations show good agreement with LiDAR measurements of the AV10 wake

Outlook

- Simulation of whole wind farms (alpha ventus, Riffgat)
- Test of control strategies
- Consideration of neighbouring wind farms
- Further coupling with aeroelastic models for load estimations

Acknowledgements

The research in the offshore wind farm »alpha ventus" was carried out in the frame of the RAVE (Research at alpha ventus) research projects »GW Wakes - Part A« and »OWEA Loads«, funded by the *German Federal Ministry for Economic Affairs and Energy,* grant numbers (0325397A-B, 0325577B).

We thank Deutscher Wetterdienst (DWD) for providing analysis data. Computer resources have been partly provided by the North German Supercomputing Alliance (HLRN).

Literature

[1] Maronga et al., 2015

[2] v Dooren, 2014

[3] Dörenkämper, 2015

Federal Ministry for Economic Affairs and Energy

Thank you!