

Characterization of Wind Power Fluctuations and Prediction

RAVE-Project: Grid Integration of Offshore Wind Farms

Lueder von Bremen, Jens Tambke, Nadja Busch-Saleck

ForWind – Center for Wind Energy Research University Oldenburg, Germany

Funded on the base of an act of the German Parliament

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

Supervisor

Coordination

Outline

Motivation

> Test Case: Cold Surge over the North Sea

Metric to quantify wind power fluctuations

> Dependence on wind speed and thermal stability

Summary and Outlook

Motivation:

≻Known wind power fluctuations at Horns Rev

➢ Very strong wind speed fluctuations are observed at FINO1 in 5min averages from 1Hz cup anemometer (equivalent to spatial smoothing at Alpha Ventus)

Key Problem:

wind fluctuations occur due to sub-grid processe that are not explicitely modelled yet (in NWP).

 \rightarrow link with large-scale variables (e.g. stability)

Influence of Thermal Stability on Wake Effects

Influence of Turbulence on Wake Effects

Test Case: Cold surge (4 June 2009)

Synoptic Situation at 4 June 2009, 0UTC

850hPa Temp at 3 June, 0UTC

30h later: 850hPa Temp at 4 June, 6UTC

250. 252. 254. 256. 258. 260. 262. 264. 266. 268. 270. 272. 274. 276. 274

Test case: Cold surge (4 June 2009)

Test case: Cold surge (4 June 2009)

Downscaling Experiment: Wind field at 100m with COSMO (dx=1.6km)

Diploma Thesis, Uni Trier & ForWind Oldenburg

>COSMO simulates very heterogeneous wind field in unstable thermal stratification

Test case: Cold surge (4 June 2009)

Downscaling Experiment: COSMO, dx=1.6km

Diploma Thesis, Uni Trier & ForWind Oldenburg

COSMO simulates very heterogeneous wind field in unstable thermal stratification

NWP Resolution matters!

RESEARCH AT ALPHA VENTUS

Open cellular convection at June 4, 2009 6UTC

(Calculated) Wind Power Fluctuations at FINO1 (13 Oct 2009)

Metric: Sum of gradients within a certain time period
Optional: only gradients that exceed a certain threshhold

Time series of totalfluc in 2009 (6h time window)

>Strong fluctuations (>20% of installed power) occur predominantly in autumn

Alternative (but complicated) approach HHT: Hilbert-Huang-Transform 2.0 1.5 cycles per hour 1.0 0.5 0.0 1 15 29 days 0.00 0.04 0.08 0.12 0.16 0.20 25 20 wind speed [m/s] 15 wind speed time series 10 15 March 2006 1 29

RESEARCH AT ALPHA VENTUS

Comparison HHT and totalfluc

Wind speed gradient (5min)

Comparison HHT and totalfluc (one year, 6hourly)

All Totalfluc₀₋₁ depending on thermal stability and wind spee

Strong Totalfluc_{0.2-1} depending on thermal stability & wind speed

>Thermal stability (=gradient of pot.virt Temp=(Θ_{925} -

 $\Theta_{surface}$)/dz, here: from ECMWF analysis)

>10m wind speed forecast (intraday)

Summary and Outlook

- Sum of relevant gradients (totalfluc) is a simple metric for wind power fluctuations and is related to i) Wind speed and ii) atmospheric stability
- Atmospheric conditions (large scale synoptic situation (cold surge)) leading to fluctuations can be forecasted by NWP
- Mesocale model COSMO simulates heterogeneous wind field in unstable thermal stratification (but resolution matters)
- Evaluate totalfluc with measured wind power and establish relation to more large-scale forecast variables (cyclonicity) or small-scale variables (TKE, vertical wind speed)
- Use heterogeneous fields from mesoscale modelling to define a "spatial" fluctuation metric and link with "temporal" totalfluc

Acknowledgements: The work has been done in the project RAVE-Grid Integration of Offshore Wind Parks funded by BMU.

