

Advances on shortest-term predictability with Ensemble Kalman filtering

Funded on the base of an act of the German Parliament

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

Supervisor

Coordination

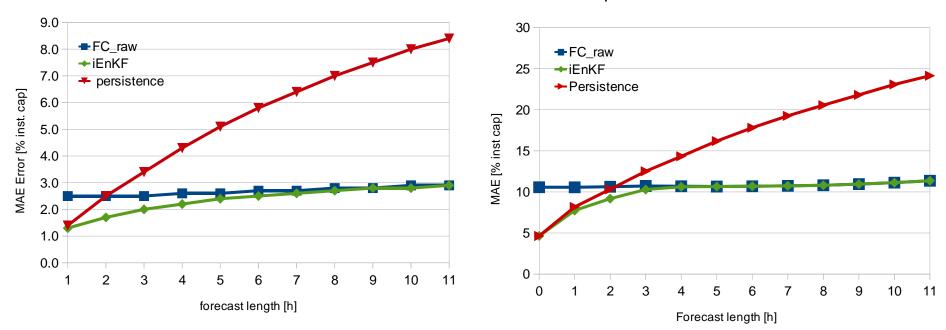
Table of Contents

- Introduction to the Offshore Forecasting Problem
- Forecast challenges and requirements
- The concept of the inverted Ensemble Kalman Filter (iEnKF)
- Uncertainty forecasts and trading of offshore wind power
- Summary & Conclusions

Introduction to the Offshore forecasting problem

What characterizes offshore wind power:

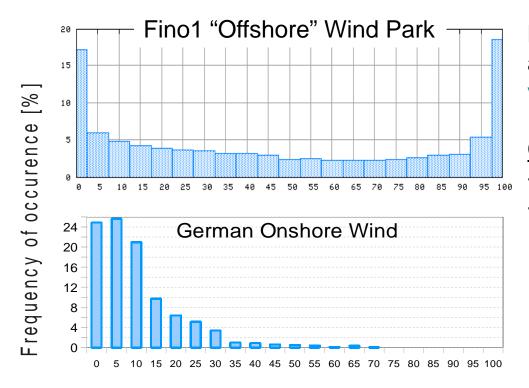
>> high load factor (often between 40-50% of inst. capacity)
>> high variability of the wind power


What characterizes offshore wind power forecasting:

>> the forecast error is low relative to the generated power (~25% day-ahead)
>> the forecast error is high relative to the installed capacity (~20% day-ahead)
>> the forecast error growth is higher than on land due to
uncertainty in the weather forecast process !

Statistics of short-term forecasting

Verification period: Jan 2011 – Dec 2011



German Onshore Wind Power

Alpha Ventus Offshore Wind Park

Frequency distribution of power production

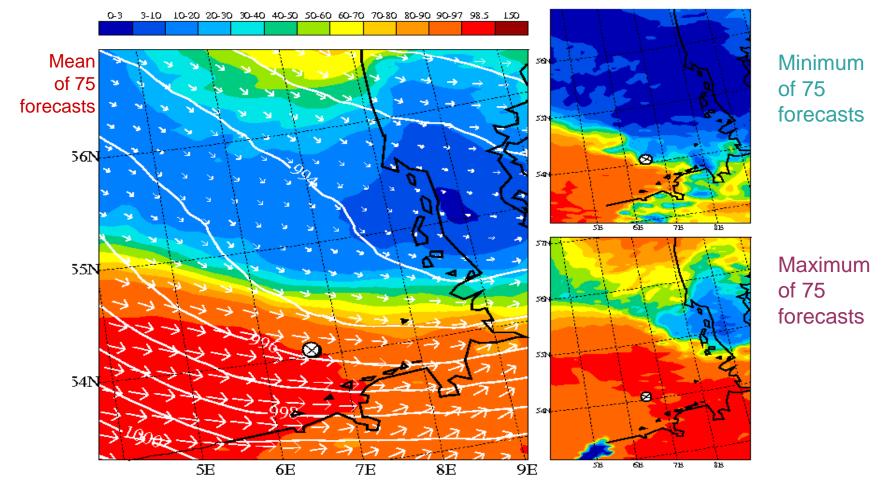
Main difference between Onshore and Offshore power production: very different producation pattern

Characterisitcs of offshore wind power:

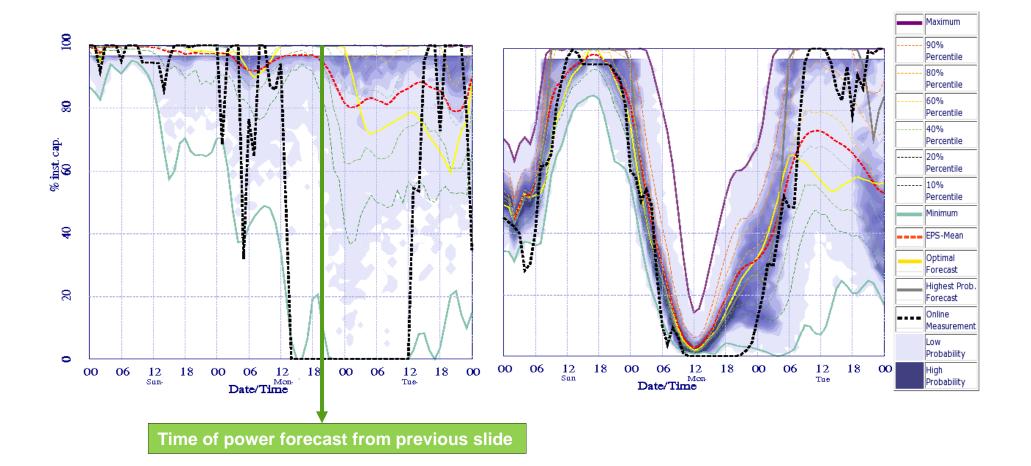
- many hours with full load
- high variability: many hours at the steep part of the power curve

Advantage:

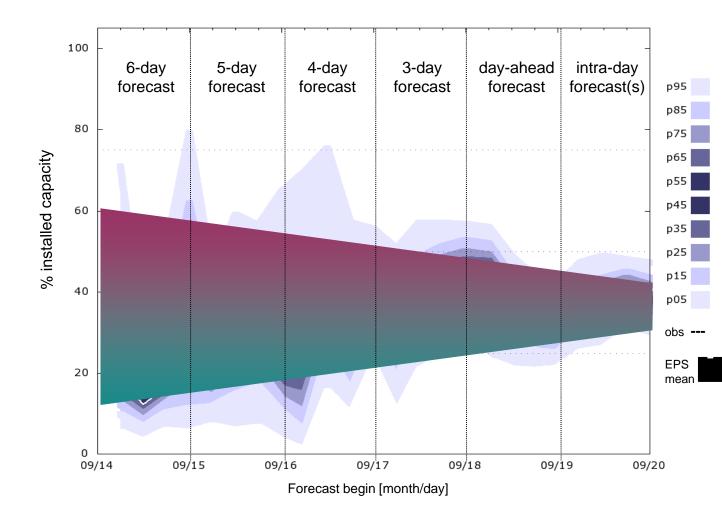
Offshore power will change total power production to a more even distribution


=> requires that the grid can transport power away!

Power Generation [% installed capacity]


Example of weather Uncertainty at Alpha Ventus

Mean, Maximum and Minimum of 75 forecasts as wind power potential



2 Examples of typical Uncertainty at Alpha Ventus

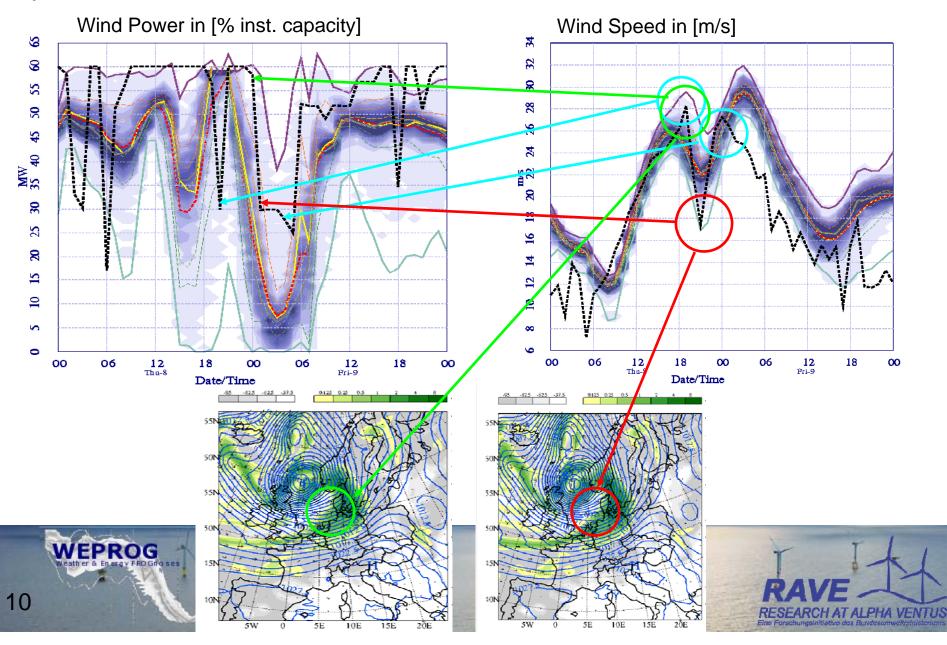
Changes of Forecast Quality over 6 days

Schematic depiction of the change in uncertainty spread for different forecast horizons.

Forecast starting with 144 hours in 6 hour intervals, up to the point in time when the forecast is valid. (2011/09/20 at 3:00UTC).

The black dashed line depicts the measurements at 2011/09/20 at 3:00UTC, the white line is the so called optimum forecast, the blue shaded areas are percentiles

Forecast challenges and requirements


* Offshore wind farms show higher variability and lower predictability

- --> Many wind farms of similar size reduce the high variability
- --> But, there will always be need for some automatic frequency control - errors will always exist !


In order to guarantee a safe and economically feasible operation we need: Weather dependent short-term forecasts Uncertainty forecasts

Example computation of the iEnKF algorithm at a site with wind and power measurements

Forecast comparison for Offshore wind parks

Cut-off Forecast NOT possible ==> it's like playing lotto

Cut-offs prediction **possible** ==> **no gambling required:** wind speed measurement clearly indicates risk of cutoff

iEnKF Forecast

Short-term Forecasting with an inverted Ensemble Kalman Filter (iEnKF)

- Generation of independent ensemble data with a multi-scheme ensemble approach
- Matrix is based on forecasts, not errors ("inverted" problem solver)
- Covariance Matrix incorporates the current weather condition into the power forecast

Remember: Offshore wind farms have many full load hours, where power measurement alone is insufficent to estimate risk of cut-offs

iEnKF is: - a weather dependent data assimilation

- is the first **physically consistent method**, where ensemble forecasts provide the framework for the distribution of observational influence
- can use wind speed & wind power measurements and has an inherent uncertainty estimate

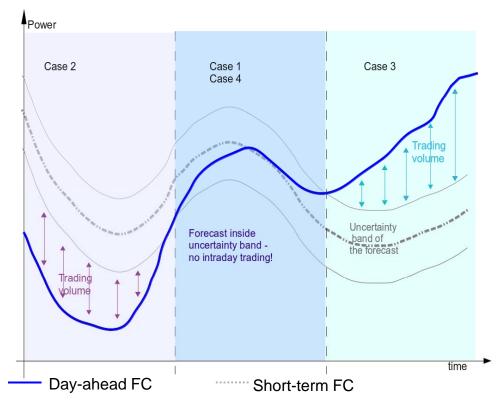
But: Powerful forecasts need full <u>data delivery</u> to TSO + Trading party => we need <u>an obligation for data transfer</u> of MET & Power measurements from large on & offshore wind farms

Predictability of high-variable and uncertain Offshore power for Trading purposes

PREDICTABILITY OF ERRORS can be computed with an Ensemble:

predictability of errors = correlation (MAE,Ensemble Spread)

Predictability measured over 1 year: Short-term FC error predictability <u>day-ahead</u> is 0.43 Short-term FC error predictability <u>2h in advance</u> is 0.53


Conclusions:

=> 47% of the error is random uncertainty, only partially weather related !

=> trading of the error in the intra-day requires uncertainty estimate to prevent DOUBLE TRADING !

Use of Uncertainty for intra-day forecasting

Expected Balance: EB = SFC - DFC Absolute Balance: AB = |SFC - DFC| - PFU The "magic formula": Computation of the balancing volume for the c<u>orrection of the dayahead forecast in the intra-day:</u>

CFc = a * SFC + b * PFU - c * DFC

where

SFC is short-term forecast, DFC is the Day-ahead Forecast PFU is the "power forecast uncertainty"

CASE	EB	AB	FUP	a,b,c
1	<0	<0	DFC	0,0,0
2	>=0	>0	SFC-PFU	1,-1,1
3	<0	>0	SFC+PFU	1,1,1
4	>=0	<0	DFC	0,0,0

Consequences of new optimisation requirements...

PARADIGM SHIFT:

Not the forecast with the lowest RMSE is desirable, but the forecast that:

- creates the least costs and generates the highest revenue
- provides highest grid security
- follows market principles
- is a reliable energy source in a dynamic market

CONSEQUENCE

Forecast optimisation and evaluation has to happen in accordance with the market rules in the future, that is in "cost space"

Conclusions

Offshore power delivers more efficient power with many more full load hours Offshore power has a higher variablity and hence lower predictability wind measurements + uncertainty estimates are required to estimate cut-offs trading of offshore power requires uncertainty estimates to prevent double trading

Powerful forecasting requires that **MET & PWR Data** is available **ONLINE** => we need an <obligation for delivery> in the law not only a <making it available> !

> Ensemble Forecasts & the iEnKF short-term algorithm have proven to be crucial tools to solve many forecasting challenges of offshoe wind power

Thanks for your attention!

More information about the studies can be found at our web-page: <a>www.weprog.com -> Information -> Publications

<u>Contact:</u> Corinna Möhrlen <u>com@weprog.com</u>

or directly by following these links:

inverted Ensemble Kalman Filter: http://download.weprog.com/public paper WIW11 032 joergensen et al.pdf http://download.weprog.com/presentation_WIW11_032_joergensen_et_al.pdf http://download.weprog.com/moehrlen_dewek2010_s10_p4.pdf

Uncertainty estimates and trading strategies:

english: <u>http://download.weprog.com/WEPROG_Trading_strategies_EEG2012_ZEFE_71-2012-01_en.pdf</u> german: http://download.weprog.com/WEPROG_Handelsstrategien_EEG2012_ZEFE_71-2012-01.pdf

Other Offshore related Research Project Publications: Final Report: High-Resolution Ensemble for Horns Rev http://www.hrensemble.net/public/pdf/HRensembleHR finalreport 2010.pdf http://www.hrensemble.net/public/pdf/HRensembleHR finalreport 2010 summary.pdf WEPROG GmbH Germany Eschenweg 8 71155 Altdorf Tel. +49 (0)7031 414279 Fax. +49(0)7031 414280

WEPROG ApS Denmark Aahaven 5 5631 Ebberup Tel. +45 64 71 17 63 Fax: +45 6471 2094

Email: info@weprog.com Web: www.weprog.com

