

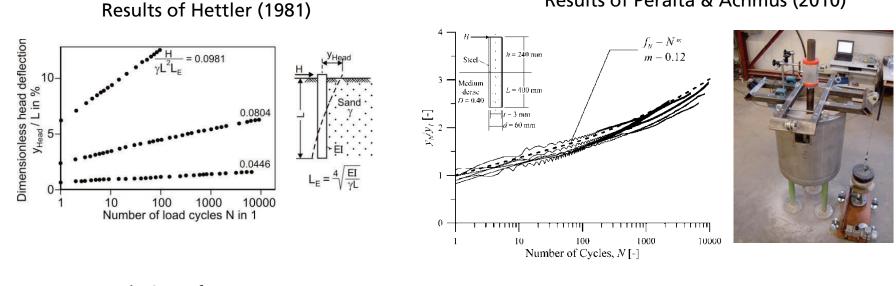
Behavior and capacity of pile foundations for offshore wind energy converters – Part I

Prof. Dr.-Ing. Martin Achmus Institute for Geotechnical Engineering Leibniz University Hannover

Coordination

Funded on the base of an act of the German Parliament

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit



Behavior and capacity of pile foundations for offshore wind energy converters – Part I

- Cyclic accumulation of monopile rotations
 - * SDM method
 - * Consideration of lifetime load spectra
- Prediction of axial pile capacity
 - * Comparison of B-method and CPT-based methods
 - * Recommendations

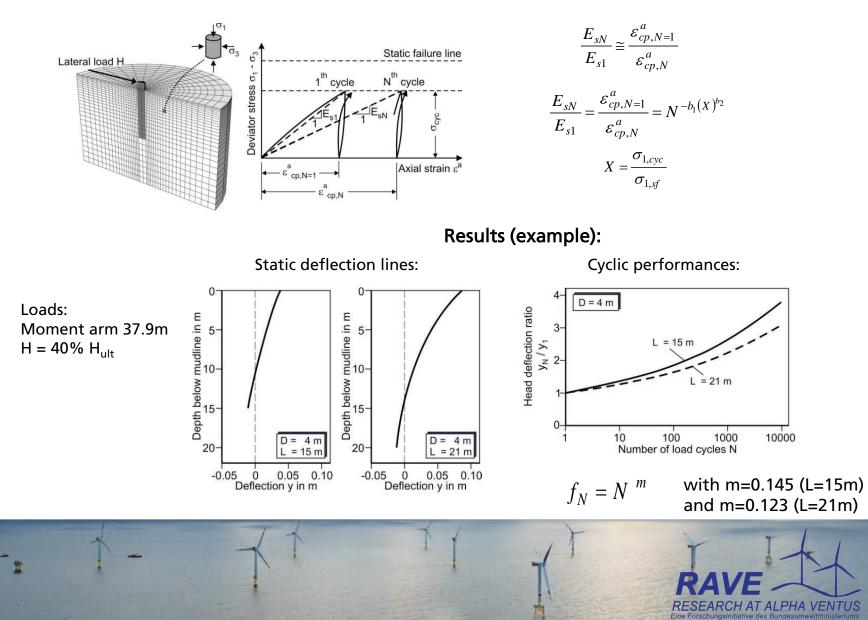
Behavior of piles under cyclic horizontal loading

Accumulation of displacements:

$$y_N = y_1 f_N(N)$$

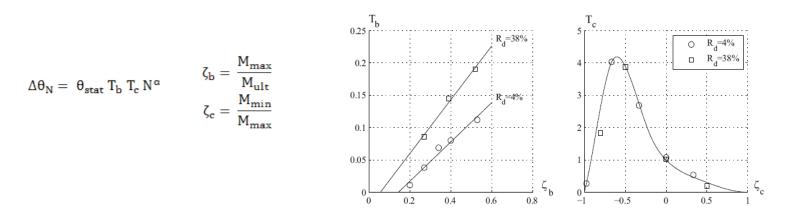
$$f_N = N^m$$
$$f_N = 1 + t \times \ln N$$

m / t are dependent on soil conditions and pile geometry (stiffness); in general also on loading conditions


Results of Peralta & Achmus (2010)

\rightarrow No general empirical approach is available

Stiffness Degradation Method


Idea: Accumulation of strains is interpreted as decrease of (secant) stiffness

4

General load data

Application of an approach proposed by LeBlanc et al. (2010)

• T_c is a function independent of soil conditions • α and $T_b(\zeta_b)$ can be determined by <u>SDM simulations</u> ($\zeta_c = 0 \rightarrow T_c = 1$)

For each load data set:

 $\Delta N_{\text{ref,equ}} = \left(\frac{\theta_{\text{stat}} T_{b} T_{c} N^{\alpha}}{\theta_{\text{stat,ref}} T_{b,\text{ref}} T_{c,\text{ref}}} \right)^{1/\alpha}$

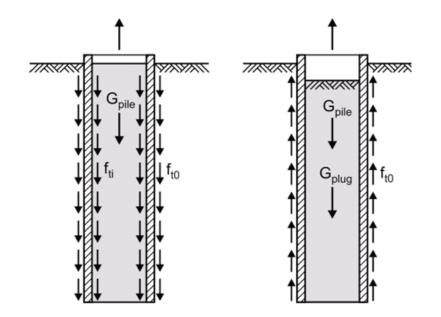
(with respect to a reference load)

$$\Rightarrow \qquad N_{ref,total} = \sum \Delta N_{ref,equ} \\ \theta_{N} = \theta_{stat,ref} (1 + T_{b,ref} T_{c,ref} N_{ref,total}^{\alpha})$$

Accumulation of monopile rotations

Concept:

- 1) Calculate cyclic performance for characteristic extreme load by SDM
- 2) Determine accumulation parameter m and cyclic parameters $T_b(\zeta_b)$, α from SDM results
- 3) Define reference load and calculate equivalent load cycle number from LeBlanc approach $(H_{ult} = f(M/H) \text{ and } \theta_{stat} = f(H, M/H) \text{ must be known})$
- 4) Determine permanent pile rotation


SDM calculations for a few representative locations might be sufficient to be able to estimate site-specific α and T_b-values with sufficient accuracy.

Axial capacity in sand: ß-method

Tensile capacity for open-ended steel pipe piles:

$$R_t = f_{to} \cdot A_o + G'_s + Min\left[G'_p; f_{ti} \cdot A_i\right]$$

β -method acc. to API and GL guidelines:

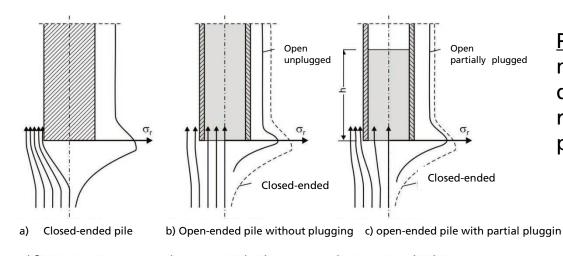
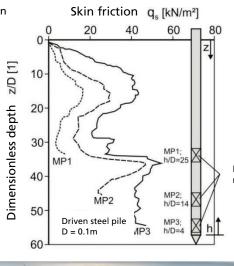

 $f_t(z) = \frac{2}{3} \cdot \beta \cdot \sigma'_v(z)$ $\beta \cdot \sigma_v(z) \le f_{t,\max}$

Table 1. Design parameters for predicting shaft friction in cohesionless soil (API 2007).

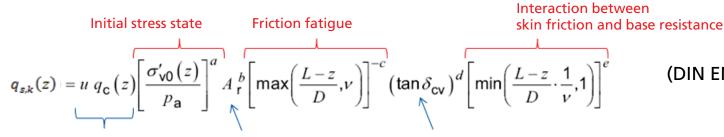
Relative density	soil	β [-]	f _{t.max} [kPa]
Medium dense	Sand-Silt	0.29	67
Medium dense Dense	Sand Sand-Silt	0.37	81
Dense Very Dense	Sand Sand-Silt	0.46	96
Very Dense	Sand	0.56	115



Effects due to installation

<u>Plugging</u> affects the magnitude of soil displacement and thus the radial stresses acting on the pile shaft.

<u>Friction fatigue</u> occurs due to cyclic shearing during installation. The result is a decrease of radial stresses.



Location of measurement points

CPT-based methods acc. to API RP 2A (2007)

New methods for the calculation of skin friction in non-cohesive soils. General equation for ICP-05, Fugro-05 und UWA-05 methods:

(DIN EN ISO 19902)

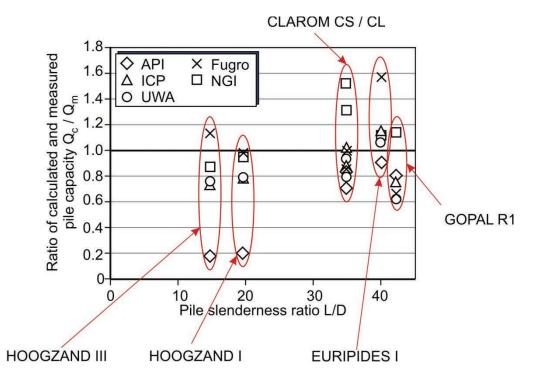
Max. radial stress

D = pile diameter D_i = inner pile diameter L = embedded depth P_a = atmospheric pressure q_c = cone resistance from CPT q_s = f (z) = skin friction σ'_{v0} = effective vertical stress δ_{cv} = wall friction angle

 $A_r = 1 - (D_i / D)^2$ effective area ratio

a, b,c, d, e, u, v = empirical coefficients, dependent on method

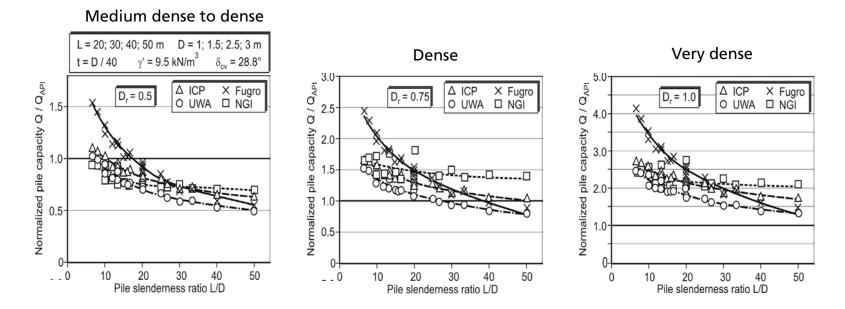
Degree of plugging


Wall friction pile / soil

Method	Type of	Parameter						
	loading	а	b	с	d	e	u	ν
	Compr.	0,1	0,2	0,4	1	0	0,023	
ICP-05	Tension	0,1	0,2	0,4	1	0	0,016	
	Compr.	0	0,3	0,5	1	0	0,030	2
UWA-05	Tension	0	0,3	0,5	1	0	0,022	2
Europe 05	Compr.	0,05	0,45	0,9	0	1	0,043	
Fugro-05	Tension	0,15	0,42	0,85	0	0	0,025	

Which method is best suited for open-ended steel pipe piles with L/D = 10 to 40 in dense sands?

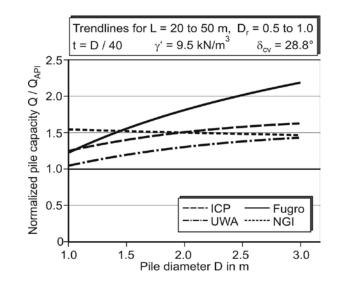
Back-calculation of (tensile) pile tests: Results



Mean value and standard deviation of Q_c/Q_m .						
	API	ICP	UWA	FUGRO	NGI	
Q _c /Q _m mean COV	0.60 0.29	0.88 0.15	0.82 0.14	1.03 0.28	1.15 0.21	

Parametric study for Q/Q_{API}

Effects of relative density and pile slenderness

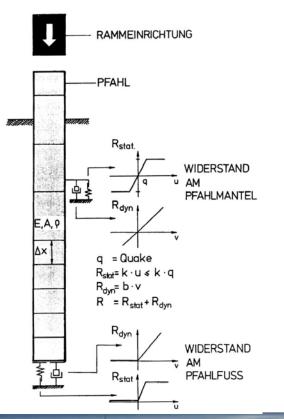


- For piles in dense sand with L/D<30 (North Sea conditions), the β-method seems to be conservative
- For long, slender piles in medium dense sands the β-method is non-conservative

Parametric study for Q/Q_{API}

Effect of the absolute pile diameter

- CPT-based methods (Fugro, ICP, UWA) predict a greater relative capacity increase with increasing diameter than the β-method. But: For D>1m no experimental evidence exists!
- CPT-based methods should be applied with great caution. More experience is urgently needed.

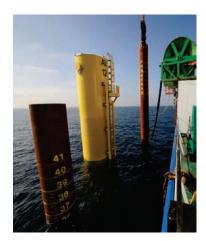


Dynamic pile tests

Dynamic pile tests are compulsory acc. to BSH guidelines

 \rightarrow The predicted capacities are checked

 \rightarrow The prediction must lie on the safe side!


$$R_{k} = \frac{R_{m,min}}{\xi_{6}} \qquad \xi_{6} = \left(\xi_{0,6} + \Delta\xi\right)\eta_{D}$$
$$R_{k} = \frac{R_{m,av}}{\xi_{5}} \qquad \xi_{5} = \left(\xi_{0,5} + \Delta\xi\right)\eta_{D}$$

Recommendation:

- Application of API ß-method
- Comparison with CPT-based methods
- Use of conservative approach
- \rightarrow More experience needed!

Thanks for your attention !

Behavior and capacity of pile foundations for offshore wind energy converters-Part II

Prof. Dr.-Ing. Werner Rücker Fachbereich Ingenieurbau BAM Berlin

Gefördert auf Grund eines Beschlusses des Deutschen Bundestages

Projektträger

Koordination

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

Based on the research project

Practical Design and observations model for pile foundations under cyclic loading Project Nr.: 0327618A

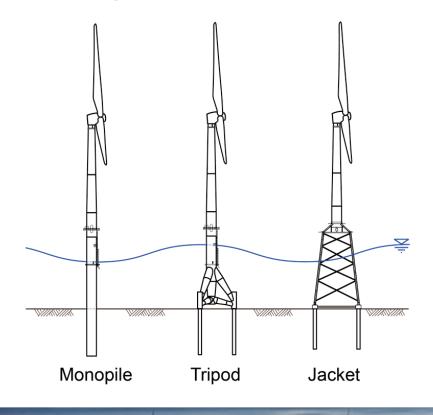
Main Partners

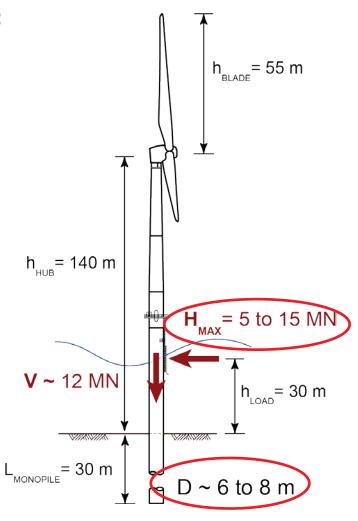
• TU Berlin

Prof. Dr.Ing. S. Savidis

- GuD Consult
- Prof. Dr.-Ing. Th. Richter
- Multibrid

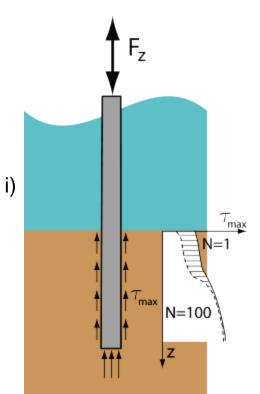
Dr. A. Hofmann

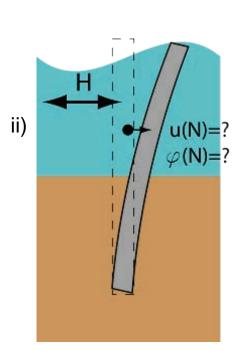


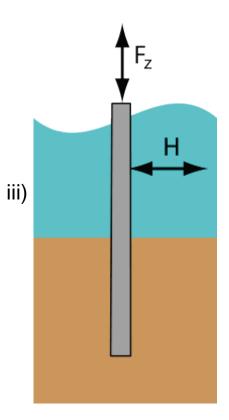

Pile foundations for OWT's

- Large ratio H / V
- Large pile diameters

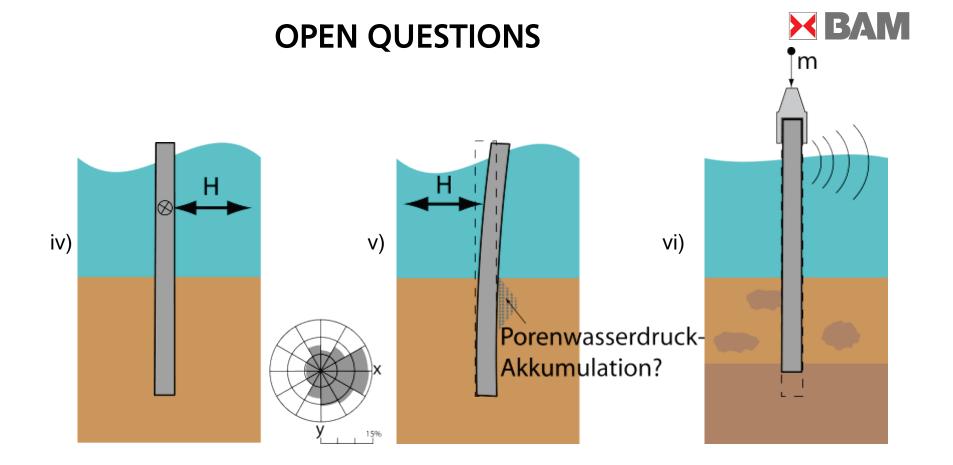
Piled Foundations for Offshore Wind Turbines







OPEN QUESTIONS



Bearing capacity cyclic axial (N>10⁹ cycles)

Bearing capacity cyclic lateral

Combined loading (axial and lateral) Order of cyclic loading

Variable directions and irregular loading, Ageing

Pore water accumulation, Ageing Pile driving, Static Load bearing capacity, environment, ...

X BAM

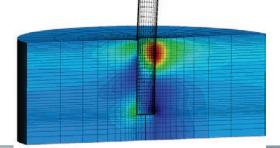
METHODOLOGY

Field observations and tests

- Offshore prototypes (Alpha-Ventus, BARD, ...)
- Field tests onshore (Horstwalde testing site)

Physical testing in the lab

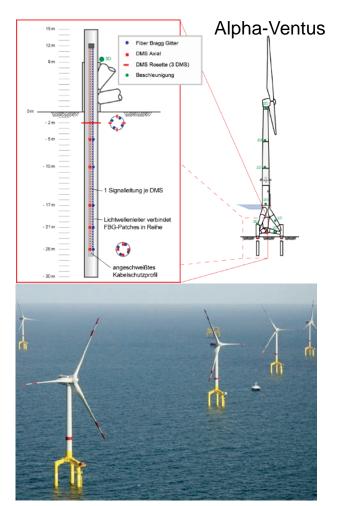
- Model tests in 1:100 and 1:30 scales
- Element Tests, i.e. Simple-Shear, Triaxial-Test


Computational models

- Coupled FE models: Water-Soil-Structure interaction
- Winkler models for design (lateral loaded piles)
- Cyclic degradation models (axial loaded piles)

Field observations and tests

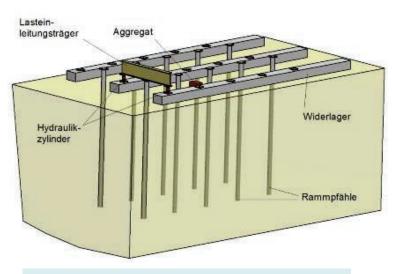
Offshore prototypes


- Alpha-Ventus: Turbine with tripod support structure
 - **Structure**: Strain gauges, accelerometers, inclinometers
 - **Foundation:** Strain gauges and Fiber Bragg Grating sensors along a tripod-pile
- BARD: Turbine with tripile support structure
 - **Structure**: Strain gauges, accelerometers, inclinometers

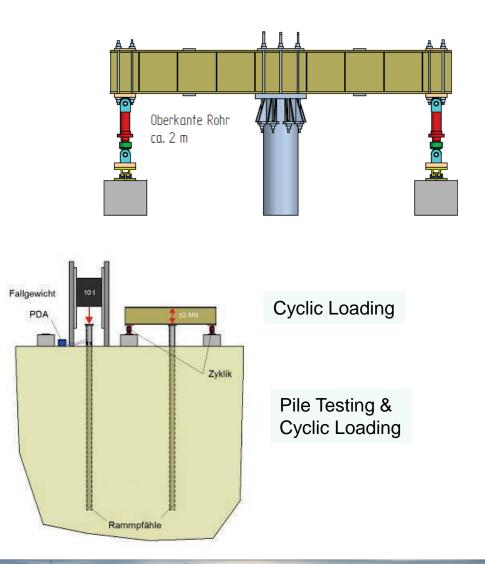
Field tests at Horstwalde

• Large-scale pile tests

8


BARD Offshore 1

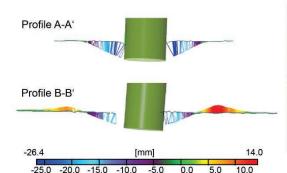
Cyclic Loading and Ageing of Pile Foundations –

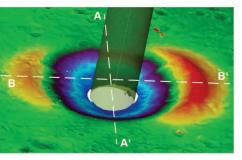


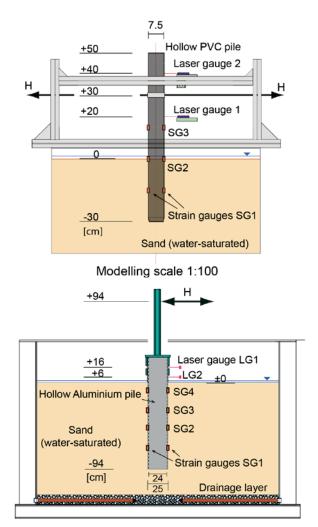
Field tests BAM-Horstwalde

Pile testing area – driven piles ~ 4MN

- 10 piles under static and cyclic axial loads
- Pile Capacity using dynamic pile testing
- Aims: Cyclic friction fatigue, ageing effects, ...




Model tests at BAM


Monopile and Tripod models at reduced scales

- Conditions: Water-saturated, natural gravity (1-g)
- Measurements:
 - PILE: Loads, displacements, strains, ...
 - SOIL: Point displacements, earth pressures, ...
 - WATER: Pore pressures (so far, inconclusive)
 - Surface (and inside) topographic scans

Physical test at 1:100 scale

Modelling scale 1:30

Some experimental results...

RESEARCH AT ALPHA VENTUS

Cyclic laterally loaded piles

A

0.3

0.2

0.1

0.0

0:0

-0.5

-1.0

.5

ABC

ACB

90000

-2.0

-2.5 -3.0

0

F/F

akk. plast. Verschiebung [mm]

- Generalised accumulation law for the long-term
- Decreasing cyclic amplitude \rightarrow Sand densification
- Decreasing bending moments \rightarrow Sand stiffening
- In fully drained conditions, order effects not relevant

0.25

В

CBA

BCA

180000

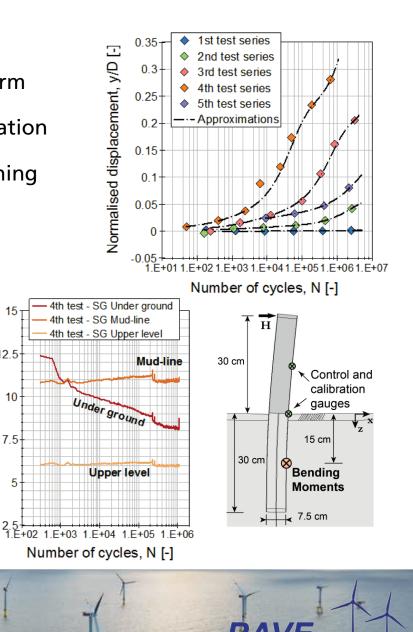
C

0.08

270000

Z /klen N [-]

15


12.5

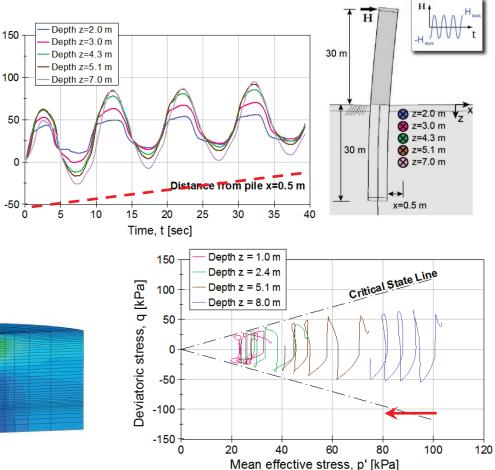
10

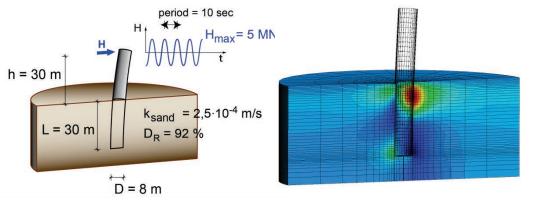
7.5

3ending moment, M [N m]

0.17

Some numerical results...

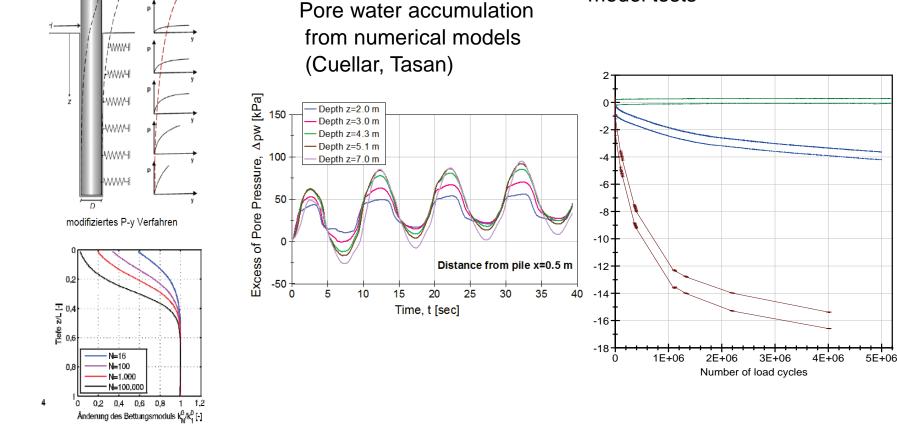



Pore water accumulation at monopile foundation

Δpw [kPa]

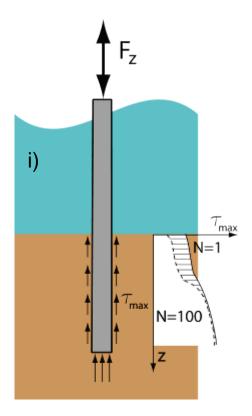
Excess of Pore Pressure,

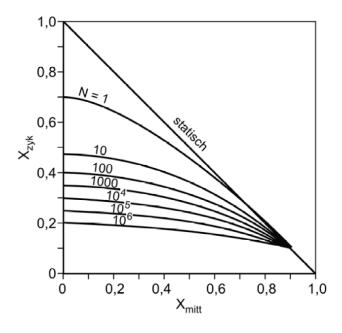
- Excess pore pressure accumulates progressively
- Thereby, soil's effective stress decreases
 - → Softening


Design model for cyclic lateral loading

Equilibrium at Winkler beam With modified stiffness values

13


Prognosis of permanent deflection by numerical methods bases on model tests


Design model for axial loaded piles

Bearing capacity cyclic axial (N>10⁹ cycles) $\mathbf{F}_{d} \leq \mathbf{R}_{d}(N) \qquad \mathbf{R}_{d}(N) = \mathbf{R}_{k} / \gamma_{P} - \Delta \mathbf{R}_{zykl} \cdot \boldsymbol{\eta}_{zykl}$

∆R_{zyk} from Interactionsdiagramms z.B. *"Kirsch/Richter/Mittag"*

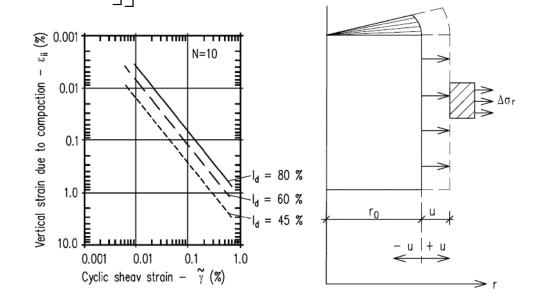
Analytische Beschreibung der Interaktionskurven:

 $X_{zyk} = \kappa \left[1 - 1, 11^{EXP} \cdot X_{mitt}^{EXP}\right] + 0,1235 \cdot X_{mitt}^{EXP}$

mit $\kappa = 0.5 + 0.67[\log(N+1)-1.0746 \log(N)]$ EXP = 2 - 1.5[log(N+1) - log(N)]

14

Capacity degradation (see Lit.Richter/Kirsch)


arenz

Degradation of bearing capacity at the pile shaft due to cyclic compaction

$$\Delta \tau(\mathbf{N}) = 2 \cdot \mathbf{G}_{w} \cdot \tan \delta \cdot \Delta \mathbf{D}^{*} \cdot \left[\tilde{\gamma} \cdot \left(\frac{\tilde{\gamma}}{\gamma_{grenz}} - 1 \right) - \frac{1}{2} \cdot \alpha \cdot \gamma_{grenz} \left[\left(\frac{\tilde{\gamma}}{\gamma_{grenz}} \right)^{2} - 1 \right] \right]$$

$$\Delta D^* = \Delta D \cdot \lg N = 0.5 \cdot I_D^{-2.32} \cdot \lg N$$

Ν Zyklenanzahl, Schubmodul bei Wiederbelastung, $egin{array}{c} G_W \ \mathcal{S} \ \mathcal{I}_d \ ilde{\gamma} \ ilde{ au} \ ilde{$ aktivierter Reibungswinkel, Initiale Lagerungsdichte, zyklische Schubverzerrung, zyklische Schubspannung, Schubmodul bei zyklischer Belastung, Grenzschubverzerrung, γ_{grenz} Dilatationsparameter. α

THANKS FOR YOUR ATTENTION

