

Lidar Assisted Wind Turbine Control

D. Schlipf ¹, J. Anger ¹, O. Bischoff ¹, M. Hofsäß ¹, A. Rettenmeier ¹, I. Würth ¹, B. Siegmeier ², P. W. Cheng ¹

¹ Stuttgart Wind Energy (SWE) - Universität Stuttgart

² AREVA Wind GmbH

RAVE 2012 Bremerhaven, 8.-9.5.2012

Gefördert auf Grund eines Beschlusses des Deutschen Bundestages

Projektträger

Koordination

Motivation

Measurements from AREVA Wind prototyp in Bremerhaven 2009 within LIDAR I

Can Lidar help to get ...

... more energy with Yaw control? Speed control?

... less loads with Collective pitch control? Individual pitch control?

Yaw control normally by nacelle sonic/wind vane

- disturbed by blades
- only point measurement

Lidar based yaw control

- undisturbed inflow
- measurement over rotor area

AREVA Wind prototyp in Bremerhaven

Theoretical Considerations

Static misalignment expressed by mean $\bar{\alpha}$:

$$P(\bar{\alpha}) = P_{max} \cos^3 \bar{\alpha}$$

Could be solved by better calibration of nacelle anemometer!

Dynamic misalignment expressed by standard deviation $\sigma(\alpha)$:

$$P(\sigma) = P_{max} \int_{-\infty}^{\infty} \varphi_{0;\sigma} \cos^3 \alpha \ d\alpha$$

Could be solved by Lidar, but depends on control strategy!

Simulated Measurements

- NREL 5MW + Lidar simulator
- Turbulent wind fields α_W =10°
- Assumption: homogeneous inflow
- α_L similar to undisturbed simulated hub anemometer α_S
- Robust against vertical shear, disturbed by horizontal shear
- Absolute error <1° for 10 min

But we have no model for

- Anemometer disturbance
- Inhomogeneous inflow
 - Consider real data!

Simulation with Real Measurements

- 5 month of inflow measurement
- 10 min Lidar wind direction assumed as perfect
- compared to sonic
- same control strategy is assumed for Lidar and sonic: turbine yaws if 10 min average > 10°

Static:

overall mean error 1°

Dynamic:

standard deviation $6^{\circ} \rightarrow 4^{\circ}$

AREVA Wind prototyp in Bremerhaven

- With standard control maximal 1%!
- Maximal 2% more energy output!

Collective pitch control normally by rotor/generator speed feedback only

delayed reaction due to inertia

Lidar based collective pitch control

reaction in time

Theoretical Considerations

Theoretically full compensation: $\Sigma_{FF} = \Sigma_{\Omega\theta}^{-1} \Sigma_{\Omega\nu}$

- Not feasible for aeroelastic model
- Possible for reduced nonlinear model

Using static pitch curve $\theta_{ss}(v_{ss})$ with prediction time τ :

$$\theta_{FF}(t) = \theta_{SS}(v_{FF}(t-\tau))$$

Advantages:

- simple update
- guaranteed stability
- 1 design parameter τ
- few model information

Simulated Extreme Loads

- FAST NREL 5MW
- perfect Lidar measurement
 - ➤ High load reduction.

But not realistic, because of

- Wind evolution
- Lidar error
- Turbulence
 - Consider real data!

Estimation Rotor Effective Wind Speed from Turbine Data

law of conservation of angular momentum

 v_{0L}

Used for simulations:

"What would have happened...."

Anemometer

Lidar Assisted Collective Pitch Control

... when we would have used the nacelle anemometer?

	$\sigma(\dot{\theta})$	$\sigma(\Omega)$	$DEL(M_{yT})$
FB+FFA	+ 712 %	+ 272 %	+ 559 %

Really bad idea!

... when we would have used the scanning Lidar?

	s x 10 ⁻⁴							
PSD(dθ/dt) [rad²/s²/Hz]				,				
[rad ² ,	4							······
J⊖/dt)	2							_
)SD(c								
	x 10 ⁻³	ļ	ļ			·	ļ.	
² /Hz]	3	\						_
PSD(Ω) [rpm²/Hz]								<u> </u>
(IJQg	1							
- ·	x 10 ¹⁵		·			-	·	
² /H ₂	_				- FB			
Z _H 1.	5					F with Lic	lar lar + Filter	-
<u>≥</u>	1 -						vith Lidar + F	ilter │
Σ, ¢	_ 🐧						-	
PSD(M _{yT}) [MNm ² /Hz]								
ď	0	0.05	0.1		1.5	0.2	0.25	
	U	0.05	0.1	0. frequer		0.2	0.25	0.3
				1	> r1			

	$\sigma(\dot{\theta})$	$\sigma(\Omega)$	$DEL(M_{yT})$
FB+FFL	+ 54 %	- 25 %	+ 29 %
FB+FFL+F	- 11 %	- 41 %	- 12 %
FBT+FFL+F	- 30 %	- 24 %	- 20 %

- filter necessary to reduce rotor speed variation + loads
- further reduction by retuning

Adaptive Filter Design

$$\hat{k} \sim 0.04 \frac{rad}{m} \rightarrow f_{cutoff} = \frac{\hat{k}\bar{u}}{2\pi}$$

- correlation depending on mean wind speed \bar{u} , stable over k
- for this turbine + trajectory only turbulence eddies up to ~160 m can be compensated

Anemometer

Lidar Assisted Collective Pitch Control

... when we would have used the nacelle anemometer + a filter?

	$\sigma(\dot{\theta})$	$\sigma(\Omega)$	$DEL(M_{yT})$
FB+FFA+F	+6%	+ 38 %	+6%

- phase delay through filter
- feedforward action too late

Conclusions

Lidar Assisted Yaw Control

- yaw misalignment can be distinguished as static and dynamic problem
- some energy gain, depends on inhomogeneity and control strategy

Lidar Assisted Collective Pitch Control

- filter necessary to avoid wrong pitch action
- preview necessary to apply filter
- low frequency reduction of rotor speed variation of rotor speed variation, pitch activity and loads, e.g. tower
- frequency depends on turbine size and lidar scan

Current Research and Outlook

- Scanner used in other campaigns
 - At DTU (Denmark) for fundamental research
 - At NREL (US) for wield tests on a small turbine
- Improving lidar measurements at "alpha ventus"
- Development of robust lidar and test in LIDAR II
- Proposal to control of AV7 (AREVA M5000) in LIDAR II+

AREVA M5000 im Testfeld alpha ventus

Thank you for your attention!

Feel invited for further presentations on LiDAR technology

Session 5: Wind turbine control and wind farm flow

5.5 Analysis of wake-induced wind turbine loads

Project: RAVE - OWEA

J.J. Trujillo, B. Kuhnle, H. Beck, ForWind - University of Oldenburg

Session 6: Site conditions

6.4 Statistics of extreme wind events and power curve monitoring

Project: RAVE - LIDAR, RAVE - OWEA

Dr. M. Wächter, ForWind - University of Oldenburg