

Testing of bubble curtains to mitigate hydro sound levels at offshore construction sites (2007 to 2011)

Jörg Rustemeier, Tanja Grießmann, Raimund Rolfes

ForWind – Leibniz Universität Hannover

Gefördert auf Grund eines Beschlusses des Deutschen Bundestages

Projektträger

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

Koordination

Content

- Definition of sound pressure levels
- Offshore construction sites
- Use of a large radius bubble curtain at FINO3
- Use of a layered bubble curtain at *alpha ventus*
- Comparison of both attempts
- Testing of different tube systems in Schall 3
- Summary and conclusions

Definition of sound pressure levels

• SPL in dB:

$$L = 20 \log \left(p_{rms} / p_0 \right)$$

• Sound exposure level (SEL) in dB:

$$L_{E} = 10 \log \left(\frac{1}{T_{0}} \int_{T_{1}}^{T_{2}} \frac{p(t)^{2}}{p_{0}^{2}} dt \right)$$

- Peak level (PL) in dB:
 - $L_{peak} = 20 \log \left(\left| p_{peak} \right| / p_0 \right)$

(Source: Elmer, K.-H., Betke, K., Neumann, T.: Standardverfahren zur Ermittlung und Bewertung der Belastung der Meeresumwelt durch die Schallimmission von Offshore-Windenergieanlagen – "Schall II")

Offshore construction sites

FINO 3: Research platform

Source: http://www.fino3.de

Offshore wind parks and transformer platforms - German North Sea

Source: BSH (Map) / DEWI GmbH (Project Data) - Status: 2012-01-25

Offshore construction sites

Alpha ventus: First German offshore wind farm

Offshore wind parks and transformer platforms - German North Sea

Source: BSH (Map) / DEWI GmbH (Project Data) - Status: 2012-01-25

FINO3

- Monopile with a bottom diameter of 4.75 m
- Piling energy up to 800 kJ

Bubble curtain at FINO3

Water depth of about 22 m

Bubble curtain around pile with a radius of 70 m

Hydro sound pressure measurements at a distance of

- 245 m south
- 910 m east

Short test after pile driving with 20 % of piling energy

Source: http://www.fino3.de

FINO3

Sound pressure levels at a distance of 245 m

Sound pressure levels at a distance of 910 m

Sound reduction:	distance of 245 m	distance of 910 m
Peak Level (PL)	9 dB	14 dB
Sound Exposure Level (SEL)	6 dB	12 dB

FINO3

Third octave spectra at 245 m south of pile

Third octave spectra at 910 m east of pile

- Sound reduction up to 35 dB at frequencies > 1000 Hz
- Maximum energy at about 200 Hz

6 tripod structures and 6 jacket stuctures

Draft of the layered bubble curtain at alpha ventus by MENCK

Water depth of about 28 m

Layered bubble curtains at 2 pile sleeves of tripod AV9

4 layers pre-installed onshore

Mobile system with 6 layers could not be installed offshore because of bad weather conditions

Hydro sound pressure measurements at a distance of

- 500 m west
- 500 m east

6 tripod structures and 6 jacket stuctures

Pre-installed lower system with 4 layers

Water depth of about 28 m

Layered bubble curtains at 2 pile sleeves of tripod AV9

4 layers pre-installed onshore

Mobile system with 6 layers could not be installed offshore because of bad weather conditions

Hydro sound pressure measurements at a distance of

- 500 m west
- 500 m east

Sound pressure levels and state of bubble curtain

Third octave spectra, position: west

Sound reduction up to 20 dB at frequencies > 300 Hz only at west position Third octave spectra, position: east (DEWI)

No sound reduction at east position

Comparison of both attempts

Best mitigation effect of the bubble curtains at frequencies > 1000 Hz

Maximum energy of unmitigated sound wave at about 200 Hz

- Shift the range of highest efficiency to lower frequencies by:
- creating bigger bubbles
- increasing the air volume

Sound reduction at FINO3 and alpha ventus (only west position)

Schall 3

Testing of different pipes to vary the air volume fraction and bubble sizes by varying

- the nozzle size
- the nozzle spacing
- the air pressure

Testing of different membranes which were put on the pipes

Testing of a double bubble curtain (using 2 pipes)

Bubble curtain tests at the Hamburg Ship Model Basin (HSVA)

Schall 3

Testing of 4 pipes and a special hose

Bubble curtain tests with about 3 ms time without reflections

Use of CW-signals

Variation of

- signal frequency
- air pressure and volume

Bubble curtain tests in a lake near Bremen (Atlas Elektronik)

Schall 3

Results and comparison of systems

Application of the results to the measurements of FINO3

Summary and conclusions

FINO 3:

- Distance 910 m: Clear mitigation effect (12 dB for SEL, 14 dB for L_{Peak})
- Distance 245 m: reduced mitigation effect (6 dB for SEL, 9 dB for L_{peak})
- No time delay at construction site
- Prototype tested was too expensive

Alpha Ventus:

- Good results (13 dB for SEL, 14 dB for L_{Peak}) direction "with the current" (west position)
- At the same time: nearly no effect at east position
- Time delay at construction site
- Prototype tested needs to be improved and further developed for practical use

Schall 3:

- Promising results for a new tube system coated with a special membrane (test facility)
- Offshore tests needed to prove the results

