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Introduction to the Rave - OWEA Project

The OWEA project deals with verification and validation of
offshore wind turbines,

» Verification of meteorological aspects,
» Verification of aerodynamic simulations,
* Load monitoring aspects

* Validation of measured and simulated loads and dynamics of
offshore wind turbines

Project started in 2008




Motivation and Aims

e Improvement of design tools and methods, demanded by industry

e The intention is to optimize future wind turbine concepts and
components = increase reliability and reduction of costs

Process steps have been defined:
— Development and improvement of design tools
— Dynamic characterization of offshore wind turbines
(with fixed bottom mounted structures in medium water
depth)
— Measurement data analyses
— Validation of simulation tools with measurements




Development of Simulation Tools | .

e New support structure types are used in alpha =
ventus

e The industry demand advanced simulation solutions L\
to handle the following statements:

— Allow the simulation of complex support
structures (such as Tripod & Jacket)

— Integrated load analysis of wind turbine and

complex support structure instead of
separation or reduction methods

— Include non-linear foundation and
hydrodynamics




Coupling — Sequential Approach
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Integrated Coupling Approach
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Development of Simulation Tools |l

e The idea is to couple sophisticated simulation tools of two worlds:
wind turbine (WT) simulation & offshore support structure code

e Coupling is based on the combination of the equations of motion

Flex5 - Poseidon | Flex5 - ANSYS
ASAS (NL)

- - linear FE - non-linear FE

- more simple - more complex

Dynamic interaction between
the subsystems due to the
linked off-diagonal elements
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Advantage: Coupled Modes Shapes

Mode 0 Mode 1 Mode 2 Mode 3 1st local

2nd local
-

2" global mode 1% local mode 3™ global 3" global mode
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* Major influence on 1st local mode
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Rotational Pile Stiffness under Multi-Axial
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» Sophisticated FEM model vs. engineering approach
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= Use of engineering approach leads to minor overestimation of
rotational pile stiffness
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Influence of Local Vibrations on Fatigue

» Soft model conservative .
_ _ _ sensor position
o Stiff model ,neglects” additonal fatigue out-of-plane

» Realistic assumption of pile stiffness In-plane
leads to a few percent additional fatigue
in braces
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Measurement Data Storage @ University
Stu ttgart

RAVE

§ Measurement
o Database
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Analysis of Measurement Data |

» Analysis of measurement data are more challenging than
expected

* Data not gained from the lab, but from the field - irreproducible

* Measured quantities needs adjustment and calibration
Normalized mean strain sensors at the tower top:
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Analysis of Measurement Data |l

» A steered nacelle revolution is a very basic plausibility check
—> rotor mass imbalance provides quasi-constant loading
- tower and blade loads can be estimated by hand
- support structure loads are sinusoidal
- calm weather required
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Measurement vs. Simulation |

* Example: load analyses according to wind speed of 6, 9, 12, 15m/s
- R4 measurement data are re-simulated as close as possible

Wind =6 m/s Wind =9 m/s
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strain gauges
=== operating

« = partial failure
== total failure

Tripod Strain Gauges, M7

e Measurements started in Jan.
2010

main tube

e Sensors initially working / upper
installed: brace,
uphar th‘l
= tower: 12/12 upper
= tripod: 25/40 brace,
- lower end
= pile: 08740
lower
brace,

e Several of the sensors at lower end

tripod and pile failed during

the campaign foundation

pile




Example of Validation Test Case

Simulation test case:

e Tripod loads highly depend on the yaw
angle

e As little wind wave misalignment as possible

e Tripod brace should be aligned with wind
and wave direction

Sign. wave
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Measurement vs. Simulation Il

10-min Statistical Data of Measurements and Simulations
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Measurement vs. Simulation Il

e Small underestimation of stresses in
the simulation at the upper braces
sensor
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Conclusions

1. The implemented coupling approach works well
» Tool development is successful

* Interaction of turbine and support structure can be handled

2. Measurement Data Management System established
» Allowing plausibility checks and data correction

» Enables general data analyses of validated data

3. Validation of simul

¢ Comparison of global component loads and
» Analyses of strain gauges at the support structures

* Quality of precise simulation input data is the key




