

Possible impacts of wind farms on seabirds: the case study Alpha Ventus

Stefan Garthe, Bettina Mendel, Jana Kotzerka, Henriette Schwemmer, Nicole Sonntag

Research and Technology Centre (FTZ), University of Kiel, Germany

Funded on the base of an act of the German Parliament

Supervisor

Coordination

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

Research questions

Possible effects of the construction of offshore wind farms on seabirds

Here: Alpha Ventus

- Changes in spatial distribution ?
- Changes in abundance ?
- Changes in behaviour ?
- Risk of collision (flight heights)
- Changes in flight heights ?

Principal responses of seabirds to offshore wind farms

- Avoidance
- No response
- Attraction
- Habituation

 \rightarrow different for the different seabird species (ca. 35 in German waters)

Distribution: Common Scoters – winter

Distribution: Little Gulls – spring

Distribution: Lesser Black-backed Gulls – summer

Distribution: Lesser Black-backed Gulls

May 2010

June 2011

Heringsmöwe

Distribution: Guillemot and Razorbill – winter

8

Distribution: Common Guillemot

April 2011

October 2011

Trottellumme

Distribution: Divers (loons) – winter and spring

10

Divers: Abundances before/after construction of AV

Zone	abundance (birds/km²)		trend	
	before	construction/after		
0-2 km	0.18	0.00	_	
2-10 km	0.41	0.17	-	
10-20 km	0.33	0.18	-	
20-30 km	0.47	0.52	+	Seetauche

Behaviour: Comparison between zones

Zone	<u>0-200 m</u>	<u>200-5000 m</u>	<u>reference area</u>
Lesser Black-back	ed Gull:		
- foraging	42 %	20 %	21 %
- resting	17 %	27 %	28 %
Little Gull:			
- foraging	62 %	10 %	24 %
- resting	15 %	38 %	29 %

Flight heights: Northern Gannet

Flight heights: Lesser Black-backed Gulls

RCH AT ALPHA VENTUS

14

Flight heights: Seabirds in relation to rotor heights

Species	below	overlapping	<u>above</u>
Common Scoter	76 %	24 %	0 %
Northern Fulmar	100 %	0 %	0 %
Northern Gannet	91 %	9 %	0 %
Little Gull	82 %	18 %	0 %
Common Gull	89 %	11 %	0 %
LBB Gull	71 %	29 %	0 %
Herring Gull	57 %	40 %	3 %
GBB Gull	44 %	56 %	0 %
Kittiwake	81 %	18 %	1 %
Sandwich Tern	92 %	8 %	0 %
Common+Arctic Tern	100 %	0 %	0 %

Conclusions

- Data are preliminary and partly still (too) scarce
- Likely avoidance reactions by divers and to some extent guillemots
- Possible attraction for gull species
- LBB Gull is clearly the most frequent seabird species in Alpha Ventus wind farm
- Flight heights by most seabird species are lower than Alpha Ventus rotors but some species overlap quite substantially
- Flight heights of seabirds suggest wind turbines to be constructed as high as possible to reduce collision risks
- Within the wind farm site, foraging behaviour appears to be conducted relatively more often than outside the wind farm, in contrast to resting behaviour

