

Projekt ParkCast: Optimization of Power-Nowcasting for Offshore-Windfarms using long-range Lidar and Data Assimilation

Daniel Leukauf, Linda Menger, Anton Kaifel

RAVE Workshop, 11.05.2023

Motivation

On a time scale of minutes to hours...

- Power generation of wind turbines can be highly variable.
- Causes:
 - Ramp Events
 - Wake Effects due to nearby turbines
- These events are notoriously difficult to predict accurately using numerical models.

Observations from upstream is required \rightarrow remote sensing.

Model Errors of wind speed (WRF – FINO1, 1 Year of Simulation)

W

What is needed?

Observations: Long Ranged LIDAR

- Long Ranged (>= 10 km)
- Observe at least wind speed at hub height.
- Reliable and fast data transmission.
- NWP Model Data
 - Used to complement incomplete or missing Obs.
 - Used as a fallback

- Accurate & Sharp
- Fast
- Reliable

Nowcasting Process Chain

Fail-Save Design

- Multiple DNN have been
- Each DNN is missing one or more Data sources. $\rightarrow A$ power prediction is always possible
- The best prediction can be done if all data sources are available.

Observations

- Lidar Observations: SWE (Univ. Stuttgart)
- FINO1 Data: BSH
- SCADA Data: RAVE Consortium

Model Data

- COSMO-2 (DWD) (∆x = 2.2 km)
- WRF-Simulation ($\Delta x = 733.33$ m)
- WEPROG Ensemble Data

Multiple data sources as a **safeguard** against failure

Challenge 2: Data Availability

Challenge 2: Data Availability

- Autoencoder approach to fill gaps in available SCADA Data.
- Trained with "good" data only.
- Artificial gaps are put into these time series
- Machine Learning Model trained to fill the gaps with the most likely values based on observed patterns.
- Work only for relatively small gaps.

8

Training of the DNN: Which data sources are important?

Feature Selection

- Most important features:
 - SCADA POW,
 - COSMO-D2 TKE & WSP,
 - WRF Model Wind Speed.
- FINO and LIDAR Data are selected as well, but with smaller weights (limited range)
- WEPROG Data • contributes considerably

Results

Machine Learning (ML)

ML RMSE (kW)

Persistence

Challenge 3: Data Delay

- Prediction of Power is better than Persistence for 10 Minute prediction.
- Using old data reduces the quality of the prediction drastically.
- Prediction for t+10 min:
 Data should be available as fast as possible.
- Prediction for t+20 min: Data with 30 Minute delay is still useful
- 10 Minute SCADA data was used as ground truth.

Conclusion

Using Machine Learning and Lidar Observations,

- it is possible to forecast the power production on time-scales < 1h
- with a skill (slightly) better than 10 minute Persistence
- provided the required data is available

Suggestions for future research and development

- Improvements in data availability and training with more data
- Using a lidar with a longer range or a network of lidars.
 - Floating Lidar
 - Lidar on other Turbines
- Cooperation between wind farm operators for data exchange would enable systems that benefit all.

ACKNOWLEDGMENTS

The research was financially supported by the Federal Ministry for Economic Affairs and Energy (now Federal Ministry for Economic Affairs and Climate Action) contract number (FKZ) 0324330B (ParkCast)

Project Partners

- Stuttgarter Lehrstuhl für Windenergie (SWE) Universität Stuttgart
- WEPROG

Data Providers: RAVE, BSH

Bundesministerium für Wirtschaft und Klimaschutz

