

BUNDESAMT FUR SEESCHIFFFAHRT UND HYDROGRAPHIE

Transferability of Machine Learning Models to Neighbouring Wind Turbines

RAVE Workshop 2022 03. February 2022, Hamburg

BSH, DNV, UL International

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

- Introduction/Background
- Performance on AV04 Parent Turbine
- > Transferring the parent model to the child turbine
- First results
- Sensitivity analysis
- Sector evaluation
- Additional findings
- Future work

Introduction/Background

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

Transferring ML Models

Model built based on one turbine

Transferred to other turbines

Reliable Lifetime Estimation

Measurement Data fulfilment/extrapolation

Turbine 1

Turbine 2

Introduction/Background

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

Data from **AV04** (Parent) was used to train the model. Inputs from **AV05** (Child) was given to the trained model to estimate the load signals from **AV05**.

Example 1 : Tower signals

DNV

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

5

measured
predicted

Transferring the parent model to the child turbine

ા

First results

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

Sensitivity Analysis – Error vs Pitch vs WS/WD

Sensitivity analysis – Error vs pitch vs WS/WD

Sector evaluation – Blade Edgewise

BUNDESAMT FÜR SEESCHIFFFAHRT UND

Sector evaluation – Blade Flapwise

BUNDESAMT FÜR SEESCHIFFFAHRT UND

Additional findings

\$

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

- > Train the model with non-error/plausible data (calibration/offset errors).
- Using Wave and sea state information as input to the model.
- Adding an artificial signal as input to intimate the model about the stand still position.
- Extract wind shear information form FINO data and use as an input to the model.

Contact Details

Hans-Peter Link Tel.: +49 (0)4856 901-46 E-Mail: Hans-Peter.Link@dnvgl.com

Anish Venu Tel.: +4915111684090 E-Mail: anish.venu.external@dnvgl.com

Nick Hansen Tel.: +49 4421 4808 837 E-Mail: Nick.Hansen@ul.com

Marten-Christoffer Schmager Tel.: + +49 40 3190 3239 E-Mail: Marten-Christoffer.Schmager@bsh.de

DENEB

SEESCHIFFFAHRT UND HYDROGRAPHIE

Bundesministerium für Wirtschaft und Energie

Gestern, Heute, Morgen: RAVE Messservice und Forschungsarchiv