Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

OpenRAVE

Application of machine learning for error detection

RAVE Workshop 2022 03. February 2022

Richard Foreman¹, Thomas Neumann¹

¹ Renewables, UL International GmbH (DE)

In collaboration with:

DNV

Contents

OBJECTIVE

Requirements for Innovation

Long-term energy storage

Robotic inspection and repair methods

New transportation methods for large components

Data availability & sharing

Serial production – analysis of substructure production processes

Research & Innovation priorities 2020-2027 [ETIPWind Roadmap]

RAVE Database at BSH since 2019

BSH-Login

rave-forschungsarchiv@bsh.de

- Login via:
- Contact and Support:

Meteorological and oceanographic measurements

ORSH

Oceanographic measurements at **alpha ventus** and the **German Bight**

- Waves (Buoy, Radar and ADCP)
- Currents
- Water Level

Meteorological mast FINO 1 (separate project by BSH)

- Wind, temperature, humidity
- Lidar
- Waves
- Currents
- CTD
-

Layout of alpha ventus

hydrographic sensors
met data (sonic, lidar)
sonars
water pressure sensors
SCADA
corrosion
video cam, radar

strain gauges

accelerometers

acoustic sensors

Example Case: M7_D-D6b1u(3m)1,2

What is error in measured data?

In RAVE database, systematic errors, errors resulting from measuring devices [1], can occur, specifically offset and amplification and drift errors on long-term series.

- → RAVE Data Quality Control (DQC) [2] is unable to detect those errors
- \rightarrow No assessment of long-term consistency

Motivation

Increasing the integrity of long-term data

Objective

 \rightarrow Flag systematic errors to support DQC

Various approaches

Detection of errors or faults

RESEARCH AT AI PHA VENTUS

Methodology - Baseline approach

Considering the occurrence of systematic errors in data

- \rightarrow Fault in system
- → Change in system

Following the machine learning approach by Orozco [5]

- → Develop a machine learning (ML) model
- \rightarrow Predict sensor behavior
- \rightarrow Comparing prediction and measurement
- \rightarrow Defining appropriate error threshold and window
- → Flag systematic errors

Advantages, why ML is better

- \rightarrow Flagging can be based on smaller window
- \rightarrow Predicted behavior from ML model
 - Possibly can be used for error correction
 - Possibly error can be quantified to a certain accuracy

\rightarrow Data received from RAVE database (BSH)

 \rightarrow 10-min aggregated

- \rightarrow Sensors selection and data cleaning*
- \rightarrow Data sets preparation*

\rightarrow Model input space*

 \rightarrow Feature selection and feature engineering

\rightarrow Model selection and development

DNV

 \rightarrow Neural Network and sensitivity analysis

\rightarrow Flagging criteria

- \rightarrow Absolute error thresholds in 1 hour window
 - \rightarrow >= 5 thresholds, Flag = 1 [7]
 - \rightarrow >= 3 thresholds <5, Uncertain flag = -1 No flag = 0
 - \rightarrow < 3 thresholds,

Alpha Ventus wind farm layout [6]

1.0

RESEARCH AT ALPHA VENTUS

plication of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured d

Prediction for year 2016 data with NN V1-E

NN	Data set	MSE	RMSE	MAE	MAPE	R²
V1-E	2016	~3.0844	~1.7562	~0.1123	~15.49%	~-134.53
	Test	~0.0004	~0.0215	~0.0148	~3.46%	~0.9783

DNV

Inconsistent features

Manually checked input features and removed inconsistent measurement sensors

Retrained NN V1-E → NN V1.1-E

DNV

NN	Data set	MSE	RMSE	MAE	MAPE	R ²
V1.1-E	Test	~0.0007	~0.0270	~0.0198	~5.23%	~0.9659
V1-E	Test	~0.0004	~0.0215	~0.0148	~3.46%	~0.9783

Prediction for year 2016 data with NN V1.1-E Measured and Prediction plot - 2016 dataset

NN	Data set	MSE	RMSE	MAE	MAPE	R²
V1.1-E	2016	~0.0159	~0.1262	~0.1111	~16.12%	~0.2992
V1-E	2016	~3.0844	~1.7562	~0.1123	~15.49%	~-134.53

DNV

oplication of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured d

Prediction for year 2016 to 2020 data with NN V1.1-E

Error flagging - Blade root edge-wise

- → Either there are still inconsistent input features, or the target sensor is drifting (2016)
- → Later observed offset in measurement (2018 2020) is an error because of fault or change in system
 - → Possibility to flag with NN V1.1-E predictions

Flagging criteria \rightarrow Absolute error threshold >= +-0.5

upplication of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured

Transferring: Blade root edge-wise \rightarrow Blade root flap-wise

DNV

Results

NN V1.1-E \rightarrow NN V1.1-F

RESEARCH AT ALPHA VENTUS

Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured o

Prediction for year 2016 to 2020 data with NN V1.1-F

Measured and Prediction plot 2016-2020 dataset 1.0 Measured 1.2 Model predicton 0.8 1.0 redicted 0.8 0.6 0.4 0.4 0.2 0.2 0.0 0.0 2018 2019 2020 2021 2016 2017 Date/Time index

Strain signal

Error flagging - Blade root flap-wise

→ Observed offset in measurement (2020) is also an error because of fault or change in system

→ Possibility to flag with with NN V1.1-F predictions

Flagging criteria \rightarrow Absolute error threshold >= +-0.3

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

Conclusion

- Machine learning can be used to predict structural sensors behavior
- Transferability of neural network architecture is possible from one sensor to the other
- Preliminary results show the possibility of detection of systematic or measurement error
- Machine Learning shows the potential of increasing the integrity of long-term measurement series
- Absolute necessity for a good self-consistency test for neural network inputs

Further work

DNV

RESEARCH AT AI PHA VENTUS

- Lower error thresholds can be set to flag even lower systematic error if inputs remain consistent
- There is possibility to flag and quantify sensor drifts with self consistent inputs

Thank you

Feedback and questions?

Contact Details:

Nick Hansen Tel.: +49 (0)4421 4808-837 E-Mail: <u>Nick.Hansen@ul.com</u>

Muhammad Omer Khan E-Mail: <u>Omer.Khan@ul.com</u> Projektträger Jülich Forschungszentrum Jülich Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

References

[1] E. Luna, "Measurements & Uncertainties," DeAnza College, Accessed: Jan. 20, 2022. [Online]. Available: www.deanza.edu/faculty/lunaeduardo/documents/MeasurementsUncertainties2A.pdf.

[2] "Quality Control of RAVE Measurements from AV00, AV04, AV05, AV07-AV12 and FINO1," Bundesamt für Seeschifffahrt und Hydrographie, Oct. 2020. Accessed: Nov. 25, 2021. [Online]. Available: https://www.bsh.de/DE/PUBLIKATIONEN/_Anlagen/Downloads/Projekte/RAVE/RAVE-quality-control-of-RAVE.pdf.

[3] S. Aminikhanghahi and D. J. Cook, "A survey of methods for time series change point detection," Knowledge and Information Systems, vol. 51, no. 2, pp. 339– 367, Sep. 2016, doi: 10.1007/s10115-016-0987-z.

[4] B. C. Geiger and G. Kubin, "Relative information loss in the PCA," IEEE Xplore, pp. 562–566, Sep. 2012, doi: 10.1109/ITW.2012.6404738.

[5] R. Orozco, S. Sheng, and C. Phillips, "Diagnostic Models for Wind Turbine Gearbox Components Using SCADA Time Series Data," presented at the IEEE International Conference on Prognostics and Health Management, Seattle, Washington, Jun. 2018, Accessed: Nov. 25, 2021. [Online]. Available: www.nrel.gov/docs/fy18osti/71166.pdf.

[6] A. Venu, N. Hansen, and M. Schmager, "Data Quality Management in the RAVE project, introducing machine learning to the process," Jan. 2021, Accessed: Jan. 26, 2022. [Online]. Available: www.rave-offshore.de/files/downloads/konferenz/Workshop-2021/Ses1_4_RAVE2021_MachineLearning_BSH_DNV-GL_UL.pdf.

Appendix A – Data preparation

Sensors Selection

SCADA, Environmental [mean, min, max, std.] 2 Nacelle, 2 Tower top accelerometers [mean, min, max, std.]

Data cleaning

→ Total features 265 → Datapoints 52560

1. Sensors range test

2. Timestamps drop

→ Target signal missing, or range test failed
→ Remaining datapoints 37887

3. Removed features

 \rightarrow Availability below 50%

→ Remaining features 221

4. Timestamps drop

- \rightarrow 50% Features missing in each timestamp
- → Remaining datapoints 24749

5. Removed features

- \rightarrow Availability below 80%
- → Standard deviation = ~0
- → Remaining features 183

6. Timestamps drop

- → Any missing feature
- → Remaining datapoints 19169

Data sets preparation

Sample and split

→ Train 70%, Validation ~20%, Test ~10%

Data scaling

- → Normalized train dataset
- ightarrow Validation and test dataset transformed to normalized scale

Appendix A – Data preparation

Model input space

Feature selection

 \rightarrow Embedded methods ¹

 \rightarrow Lasso CV, Random forest, Extra trees, Extra tree, and Decision tree

 \rightarrow Selection criteria

- \rightarrow Cumulative sum importance of sensors determined
- \rightarrow Sensors cumulative sum 76% to 100% importance with increment of 5% importance
- → Transformed to Principal components (All components used)
- → Best metrics from basic neural network (Validation & Test dataset)

 \rightarrow Selected

- → Lasso CV
- → Sensors cumulative sum importance < 96%
- \rightarrow 26 Sensors, 53 features

Feature engineering

→ Principal component analysis (PCA)²

- \rightarrow Eigen vectors and eigen values
- → Correlated to uncorrelated features
- \rightarrow Train data set: Fit and transformed
- \rightarrow Validation and test dataset: Transformed
- → 99.5% Variance components

S. Biswas, M. Bordoloi, and B. Purkayastha, "Review on Feature Selection and Classification using Neuro-Fuzzy Approaches," International Journal of Applied Evolutionary Computation, vol. 7, no. 4, pp. 28–44, Oct. 2016, doi: 10.4018/ijaec.2016100102

S. Karamizadeh, S. M. Abdullah, A. A. Manaf, M. Zamani, and A. Hooman, "An Overview of Principal Component Analysis," Journal of Signal and Information Processing, vol. 04, no. 03, pp. 173–175, 2013, doi: 10.4236/jsip.2013.43b031.

Selected features

Sensor	Features
M7_PB_WirkleistungGenerator	Min, Max
M7_PB_BlindleistungGenerator	Mean, max
M7_PB_FrequenzNetz	Max
M7_PB_Generatorstrom_Effwert_L1	Mean, min
M7_PB_Generatorstrom_Effwert_L2	Min
M7_PB_Generatorstrom_Effwert_L3	Mean, min
M7_PB_Generatorspannung_Effwert_L1_L2	Mean, min
M7_PB_NetzspannungTrafoOS_seitig_Effwert_L3	Min, max, std
M7_PB_NetzstromTrafoOS_seitig_Effwert_L1	Mean, min, max
M7_PB_BlindleistungNetzTrafoOS_seitig	Max, std
M7_PB_WEAStatus	Mean, max
M7_PB_Generatordrehzahl	Min
M7_PB_RotorPosition	Mean, min, std
M7_PB_PitchwinkelBlatt2	Mean, max
M7_PB_Gondelposition	Mean, max

14				
BUN	NDES	AM	T FÜI	R
SEE	SCH	IFFF	AHR	ſ
LINI	D			
OIN				

Sensor	Features		
M7_PB_BeschleunigungGondellaengs	Std		
M7_B_D56v_x	Mean, min, max, std		
M7_B_D56v_y	Mean, max		
M7_B_D56h_x	Mean, std		
M7_B_D56h_z	Mean, max, std		
M7_PB_Windrichtung1relativ	Min, max		
M7_PB_Windrichtung2relativ	Min		
M7_PB_Windgeschwindigkeit1	Mean, max		
M7_PB_Windgeschwindigkeit2	Mean, min, std		
F1_dir_90_	Mean, std		
F1_v_50mast_corrected	Mean		

