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Requirements for Innovation
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Research & Innovation priorities 2020-2027 [ETIPWind Roadmap]

Data 
availability 

• Continuous time series 
since 2010 

Data 
Quality 

• Data Quality Control 
(DQC) implemented

• Historical data in progress

Data 
sharing

• Open access since 2019

• Meta data available since 
2021

https://etipwind.eu/files/reports/ETIPWind-roadmap-exec-summary-2020.pdf
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RAVE Database at BSH since 2019
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• Login via: BSH-Login

• Contact and Support: rave-forschungsarchiv@bsh.de

https://login.bsh.de/registrierung/formular;jsessionid=17DF82A419369A63317A8D3AA20A4556
mailto:rave-forschungsarchiv@bsh.de


February 03, 2022

Meteorological and oceanographic measurements
Oceanographic measurements at alpha ventus and the 
German Bight

• Waves (Buoy, Radar and ADCP)

• Currents

• Water Level

Meteorological mast FINO 1 (separate project by BSH)

• Wind, temperature, humidity

• Lidar

• Waves

• Currents

• CTD

• …..
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Layout of alpha ventus
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AREVA Wind M5000

Senvion 5M

©BSH

©Fraunhofer IWES

© https://www.alpha-ventus.de/technik

■ strain gauges

■ accelerometers

■ acoustic sensors

■ hydrographic sensors

■ sonars

■ water pressure sensors

■ met data (sonic, lidar)

■ SCADA

■ corrosion

 video cam, radar
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Example Case: M7_D-D6b1u(3m)1,2
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Flapwise

Edgewise

3 m

1.5 m to flange

0° (1, 1_R)

180° (1, 1_R)

90° (2, 2_R)270° (2, 2_R)

M7_D-D6b1u(3m)1,2
M7_D-D6b1u(3m)1,2_R

AV07
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What is error in measured data?

In RAVE database, systematic errors, errors resulting from
measuring devices [1], can occur, specifically offset and
amplification and drift errors on long-term series.

→RAVE Data Quality Control (DQC) [2] is unable to detect
those errors

→No assessment of long-term consistency

Motivation

Increasing the integrity of long-term data

Objective

→Flag systematic errors to support DQC

8

Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured data
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Various approaches

Change point 
detection [3]

Change points

States

Features of system 
states

Principal component 
analysis

Fault or anomaly 
detection technique

Loss of signal 
information [4]

Regression residual 
analysis 

Comparison of 
measurement and 

prediction

Fault detection

Generator bearing fault 
detection [5]

9

Detection of errors or faults
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Methodology - Baseline approach

Considering the occurrence of  systematic errors in data
→ Fault in system
→ Change in system

Following the machine learning approach by Orozco [5]

→ Develop a machine learning (ML) model
→ Predict sensor behavior
→ Comparing prediction and measurement
→ Defining appropriate error threshold and window
→ Flag systematic errors

Advantages, why ML is better
→ Flagging can be based on smaller window
→ Predicted behavior from ML model

Possibly can be used for error correction
Possibly error can be quantified to a certain accuracy

10

Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured data
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Methodology

→Data received from RAVE database (BSH)

→10-min aggregated

→Sensors selection and data cleaning*

→Data sets preparation*

→Model input space*
→Feature selection and feature engineering

→Model selection and development
→Neural Network and sensitivity analysis

→Flagging criteria
→ Absolute error thresholds in 1 hour window

→ >= 5 thresholds, Flag = 1 [7]

→ >= 3 thresholds <5, Uncertain flag = -1
→ < 3 thresholds, No flag = 0
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Alpha Ventus wind farm layout [6]

Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured data

* Further details in Appendix A
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Results

Root edge-wise strain gauge

Neural network (NN) V1-E

Test dataset (Normalized)
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Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured data

NN MSE RMSE MAE MAPE R²

V1-E ~0.0004 ~0.0215 ~0.0148 ~3.46% ~0.9783
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Results

Prediction for year 2016 data with NN V1-E
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Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured data

NN Data set MSE RMSE MAE MAPE R²

V1-E
2016 ~3.0844 ~1.7562 ~0.1123 ~15.49% ~-134.53

Test ~0.0004 ~0.0215 ~0.0148 ~3.46% ~0.9783
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Inconsistent features

Manually checked input features and removed inconsistent measurement sensors
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Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured data
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Results

Retrained NN V1-E → NN V1.1-E
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Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured data

NN Data set MSE RMSE MAE MAPE R²

V1.1-E Test ~0.0007 ~0.0270 ~0.0198 ~5.23% ~0.9659

V1-E Test ~0.0004 ~0.0215 ~0.0148 ~3.46% ~0.9783
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Results

Prediction for year 2016 data with NN V1.1-E
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Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured data

NN Data set MSE RMSE MAE MAPE R²

V1.1-E 2016 ~0.0159 ~0.1262 ~0.1111 ~16.12% ~0.2992

V1-E 2016 ~3.0844 ~1.7562 ~0.1123 ~15.49% ~-134.53
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Results

Prediction for year 2016 to 2020 data with NN V1.1-E
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Prediction less prone to outliers

Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured data
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Error flagging - Blade root edge-wise

→ Either there are still inconsistent input features, or the target sensor is drifting (2016)

→ Later observed offset in measurement (2018 – 2020) is an error because of fault or change in system 

→ Possibility to flag with NN V1.1-E predictions

Flagging criteria → Absolute error threshold >= +-0.5

18

Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured data
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Results

Transferring: Blade root edge-wise → Blade root flap-wise

NN V1.1-E → NN V1.1-F
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Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured data

NN Data set MSE RMSE MAE MAPE R²

V1.1-F Test ~0.0004 ~0.0204 ~0.0152 ~3.07% ~0.9898

V1.1-E Test ~0.0007 ~0.0270 ~0.0198 ~5.23% ~0.9659
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Results

Prediction for year 2016 to 2020 data with NN V1.1-F
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Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured data
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Error flagging - Blade root flap-wise

→ Observed offset in measurement (2020) is also an error because of fault or change in system 

→ Possibility to flag with with NN V1.1-F predictions

Flagging criteria → Absolute error threshold >= +-0.3

21

Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured data
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Conclusion

• Machine learning can be used to predict structural sensors behavior

• Transferability of neural network architecture is possible from one sensor to the other

• Preliminary results show the possibility of detection of systematic or measurement error

• Machine Learning shows the potential of increasing the integrity of long-term measurement series

• Absolute necessity for a good self-consistency test for neural network inputs

22

Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured data
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Further work

• Lower error thresholds can be set to flag even lower systematic error if inputs remain
consistent

• There is possibility to flag and quantify sensor drifts with self consistent inputs

23

Train 

dataset

Validation 
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Model 
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Trained 

Model

Test 
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Production 

Model

Consistent

Input features



Thank you

Feedback and questions?
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Contact Details:

Nick Hansen

Tel.: +49 (0)4421 4808-837

E-Mail: Nick.Hansen@ul.com

Muhammad Omer Khan

E-Mail: Omer.Khan@ul.com

mailto:Nick.Hansen@ul.com
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Appendix A – Data preparation

Sensors Selection
SCADA, Environmental [mean, min, max, std.]
2 Nacelle, 2 Tower top accelerometers [mean, min, max, std.]

Data cleaning
→ Total features 265
→ Datapoints 52560

1. Sensors range test

2. Timestamps drop
→ Target signal missing, or range test failed
→ Remaining datapoints 37887

3. Removed features
→ Availability below 50%

→ Remaining features 221

4. Timestamps drop
→ 50% Features missing in each timestamp
→ Remaining datapoints 24749

5. Removed features
→ Availability below 80%
→ Standard deviation = ~0
→ Remaining features 183

6. Timestamps drop
→ Any missing feature
→ Remaining datapoints 19169

Data sets preparation
Sample and split
→ Train 70%, Validation ~20%, Test ~10%

Data scaling 
→ Normalized train dataset
→ Validation and test dataset transformed to normalized scale

26

Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured data
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Appendix A – Data preparation

Model input space

Feature selection
→ Embedded methods 1

→ Lasso CV, Random forest, Extra trees, Extra tree, and Decision tree

→ Selection criteria 
→ Cumulative sum importance of sensors determined
→ Sensors cumulative sum 76% to 100% importance with increment of 5% importance
→ Transformed to Principal components (All components used)
→ Best metrics from basic neural network  (Validation & Test dataset)

→ Selected
→ Lasso CV
→ Sensors cumulative sum importance < 96%
→ 26 Sensors, 53 features

Feature engineering
→Principal component analysis (PCA) 2

→ Eigen vectors and eigen values
→ Correlated to uncorrelated features
→ Train data set: Fit and transformed
→ Validation and test dataset: Transformed
→ 99.5% Variance components
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Selected features

Sensor Features

M7_PB_WirkleistungGenerator Min, Max

M7_PB_BlindleistungGenerator Mean, max

M7_PB_FrequenzNetz Max

M7_PB_Generatorstrom_Effwert_L1 Mean, min

M7_PB_Generatorstrom_Effwert_L2 Min

M7_PB_Generatorstrom_Effwert_L3 Mean, min

M7_PB_Generatorspannung_Effwert_L1_L2 Mean, min

M7_PB_NetzspannungTrafoOS_seitig_Effwert_L3 Min, max, std

M7_PB_NetzstromTrafoOS_seitig_Effwert_L1 Mean, min, max

M7_PB_BlindleistungNetzTrafoOS_seitig Max, std

M7_PB_WEAStatus Mean, max

M7_PB_Generatordrehzahl Min

M7_PB_RotorPosition Mean, min, std

M7_PB_PitchwinkelBlatt2 Mean, max

M7_PB_Gondelposition Mean, max
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Sensor Features

M7_PB_BeschleunigungGondellaengs Std

M7_B_D56v_x Mean, min, max, std

M7_B_D56v_y Mean, max

M7_B_D56h_x Mean, std

M7_B_D56h_z Mean, max, std

M7_PB_Windrichtung1relativ Min, max

M7_PB_Windrichtung2relativ Min

M7_PB_Windgeschwindigkeit1 Mean, max

M7_PB_Windgeschwindigkeit2 Mean, min, std

F1_dir_90_ Mean, std

F1_v_50__mast_corrected Mean

Application of machine learning techniques to predict structural sensor data of wind turbines to identify errors in the measured data


