

International RAVE Workshop 2022

Improved domain adaptation for condition monitoring of wind

turbines

Kortmann, Karl-Philipp (Speaker) Ziaukas, Zygimantas

Agenda

- Motivation of Domain Adaptation (DA)
- Previous work in wind energy
- Methodology
 - Proposed DA model
 - Baseline DA models
 - Raw data description
- Results
- Next steps

Motivation of DA: Examples

Transfer of an existing estimator from a previous (training) domain to a new target domain.

Examples:

- Regression of tire pressure (new vehicle type)
- Regression of belt tension (individual stacker crane)
- Condition monitoring in wind farms

Problems with traditional approches:

- Presumably poor results for non-adapted estimator
- Costly:
 - recording of labelled data of the new (target) domain
 - data pre-processing and model engineering

Motivation of DA: Taxonomy

Sub-task of Transfer Learning

Requirements / Assumptions:

- 1. same task for both domains
- 2. high amount of labeled data from source domain
- 3.a) only unlabeled data from target domain or
- 3.b) partly labeled data from target domain.

Methodological categorization by *D. Tuia et al. (2016)*:

adapted from S. J. Pan and Q. Yang (2010)

Motivation of DA: Taxonomy

Sub-task of Transfer Learning

Requirements / Assumptions:

- 1. same task for both domains
- 2. high amount of labeled data from source domain
- 3.a) only unlabeled data from target domain or
- 3.b) partly labeled data from target domain.

Methodological categorization by *D. Tuia et al. (2016)*:

Previous work in wind energy

- DA so far only rarely applied to estimation tasks for wind turbines (first publications towards SHM since 2017)
- P. Gardner et al. (2019) compared two data alignment methods (transfer component analysis (TCA) and joint domain adaptation (JDA)) in order to classify cracks in WT blades.
- W. Juang and J. Jin (2021) used SCADA data to detect blade icing across two domains using a generative adverserial networks (GAN).

Methodology

Basic estimation tasks:

- Regression of generator power using blades' strain measurements ("academic" task)
- Regression of strain in tower and blade segments using SCADA data
- Ice detection on blades

Wind turbines used (a.k.a. domains):

- AV-07 (Adwen)
- AV-04 (Senvion)

RAVE data used:

• SCADA and blade / tower strain measurements from RAVE research archive

Estimation algorithm:

• MLP (tanh activation, MSE objective, SGD optimization)

Methodology: Data

Domains: AV-07 (Adwen), AV-04 (Senvion)

- tower strain data (DMS, 10 min)
 - lowest tower segment
 - four gauges around tower
- blade strain data (DMS, 10 min)
 - measurment location next to hub
 - flap- and edgewise
- SCADA data (10 min, normalized)
 - rotor speed, wind speed
 - pitch angle
 - eff. generator power
- FINO data (10 min)
 - Environmental and weather data
- Derived variables (planned)
 - Short-term 10 min damages [1]

[1]: Barradas-Berglind, J. J., and Rafael Wisniewski. "Representation of fatigue for wind turbine control." *Wind Energy* 19.12 (2016): 2189-2203.

RAVE Workshop | 2022/02/03 | Kortmann

Methodology: Proposed DA model

Optimal Transport (OT)

- Originally used to measure distances between distributions (e.g. Wasserstein distance)
- Growing attention in domain adaptation since ~2015
- Idea: Find (optimal) mapping from $P(X_s)$ to $P(X_t)$ (or vice versa) with respect to the shift expense
- Assumptions:
 - homogenious task ($\gamma_s = \gamma_t$)
 - no / small target value imbalance $P(Y_s|X_s) \approx P(Y_t|X_t)$
- Advantage over other data alignment techniques (e.g. PCA, TCA, JDA):
 - non-linear mapping
 - both unsupervised and semi-supervised applications possible
- Algorithm used: Convex group-lasso regularized OT (Sinkhorn-Knopp algorithm)

RAVE Workshop | 2022/02/03 | Kortmann

Methodology: Baseline DA models

Other DA methods used for benchmarking:

• No domain adaptation at all:

Applying the source domain trained estimator directly to the target domain

• Feature normalization:

Normalizing each input variable i.o.t. equalize value range across the domains

 Principle component analysis (PCA): Linear data mapping between two domains

Results: Strain estimation

Same estimator (MLP) for all models.

Training data amount: Source (7 months), Target (7 days (unlabeled), 1 day (labeled))

Table 1: Exemplary results (Normalised RMSE) for the estimation of mean tower strain (10 min) using un- and semi-supervised domain adaptation.

Domain Adaptation (direction)	NRMSE for domain adaptation method:					
	no data alignment	Normalization	PCA	Sinkhorn OT (unsupervised)	Sinkhorn OT (semi-supervised)	
AV04 -> AV07	1.699	1.503	0.836	0.178	0.102	
AV07 -> AV04	1.544	0.819	0.922	0.165	0.093	
AV07 only (no DA)	0.058	-	-	-	-	
AV04 only (no DA)	0.076	-	-	-	-	

Results: Power estimation

Same estimator (MLP) for all models.

Training data amount: Source (7 months), Target (7 days (unlabeled), 1 day (labeled))

Table 2: Exemplary results (Normalised RMSE) for the estimation of mean effective power generation (10 min) using un- and semi-supervised domain adaptation.

Domain Adaptation (direction)	NRMSE for domain adaptation method:					
	no data alignment	Normalization	PCA	Sinkhorn OT	Sinkhorn OT (semi-supervised)	
AV04 -> AV07	0.945	0.252	0.179	0.094	0.059	
AV07 -> AV04	0.697	0.115	0.153	0.088	0.075	
AV07 only (no DA)	0.046	-	-	-	-	
AV04 only (no DA)	0.065	-	-	-	-	

Next steps

- Application to classification tasks (seeking for good examples within RAVE)
- Comparison to state of the art deep learning DA methods (e.g. GAN-based approaches)
- Investigating the influence of the amount of data available (both target and source domain)
- Domain adaptation across different wind farms, not only different wind turbines
 - Stronger target value imbalance $P(Y_s|X_s) \neq P(Y_t|X_t)$
 - Different sensors $\Omega_s \neq \Omega_t$

Thanks for your attention! Questions?

Contact details:

Kortmann, Karl-Philipp: kortmann@imes.uni-hannover.de

Appendix: Data periods

WТ	Start	End	Duration	Function
AV-04	2019-04-01	2020-03-31	366	train
AV-04	2020-08-01	2021-07-31	365	test
AV-07	2016-08-01	2017-07-31	365	train
AV-07	2015-03-01	2015-07-31	153	test
AV-07	2016-11-01	2017-02-28	120	test
AV-07	2020-10-01	2021-02-28	151	train

Appendix: Notation

Domain D of

- *d*-dimensional (feature) space $\Omega \in \mathbb{R}^d$ with marginal prob. dist. P(X)
- a task *T* defined by a label space γ and cond. prob. dist. P(Y|X) with (multivariate) random variables *X* and *Y*. Source domain $D_s = {\Omega_s, P(X_s)}$ with $T_s = {\gamma_s, P(Y_s|X_s)}$ Target domain $D_t = {\Omega_t, P(X_t)}$ with $T_t = {\gamma_t, P(Y_t|X_t)}$

Given a Dataset $X = \{x_1, ..., x_n\} \in \chi$ with labels $Y = \{y_1, ..., y_n\} \in \gamma$, we try finding an estimator $f(\cdot) = P(Y|X) \approx P(Y|X)$.

Traditional ML: $D_s = D_t$ and $T_s = T_t$

Transfer Learning: $D_s \neq D_t$ or $T_s \neq T_t$, examples:

- Class Imbalance: Different label distribution $P(Y_s) \neq P(Y_t)$, but at least $P(X_s|Y_s) = P(X_t|Y_t)$.
- Covariate Shift: $P(Y_s|X_s) = P(Y_t|X_t)$, but (small) difference in data distribution $P(X_s) \neq P(X_t)$.

adapted from N. Courty et al. (2017) and G. Csurka (2017)