

Recent results from modelling and measurements of large-scale wakes in interaction with the marine atmospheric boundary layer Supported by:

Martin Dörenkämper, Fraunhofer IWES Oldenburg

and The X-Wakes Consortium

Thursday, 03.02.2022 | International RAVE Workshop 2022

on the basis of a decision by the German Bundestag

Motivation

Offshore Wind Energy in the German Bight

- Germany currently has second largest capacity of offshore wind farms connected to the grid
- Currently 7.7 GW out of which 6 GW are located in the German Bight

Motivation

Offshore Wind Energy in the German Bight

- Germany currently has second largest capacity of offshore wind farms connected to the grid
- Currently 7.7 GW out of which 6 GW are located in the German Bight
- Long term goals of the new German government (Nov. 2021) :
 - 2030 30 GW installed capacity
 - 2035 40 GW installed capacity
 - 2045 70 GW installed capacity
- Areas are very limited!

[source: BSH.de]

Goals of the Project

- Research Question: How do large wake effects affect the real-life wind farm operation?
 - \rightarrow Integration of several large wind farm operators into the project
- Quantification of the impact of wakes and other large-scale effects on yields:
 - Impact of Coastal Effects on Wind Farm Wakes
 - Interaction of Single Wind Farm Clusters with the Marine Atmospheric Boundary Layer (MABL)
 - Interaction of Several Wind Farm Clusters with each others and the MABL
- Scenario calculations and rating of future wind farm expansion plans (up to the year 2030)

The Project

- Budget: 4.3 Million Euro public funding by Ministry of Economic Affairs and Energy (BMWi)
- Duration: 01.11.2019 31.10.2022
- Coordination: Fraunhofer IWES (modelling) and TU Braunschweig (measurements)
- Funded partners: Research institutions / universities of former projects GW-Wakes and WIPAFF, UL International
- Associated partners: seven wind farm operators and the federal maritime and hydrographic agency (BSH)

IWES

Technische Universität

Braunschweig

Measurement Activities

- Flight data (2 manned research aircrafts & UAV)
- Satellite Data Analysis (Sentinel-1A/B)
- Stationary measurements in windward, center and leeward of wind farm clusters with scanning and profiling lidars
- Support of GloBE (global blockage) project with high wind profile and ABL height measurements
- Analysis of SCADA data of several wind farms
- Improved understanding of atmospheric processes and collection of validation data for the model development

Modelling Activities

- Mesoscale Simulations [WRF]
 - Improvement of simulations of coastal transition
 - Improvement of modelling of wind farms (layout impacts, curtailments)
 - Simulation of expansion scenarios of 2030 or later AFTER validation
- Large-Eddy-Simulations [PALM]
 - Investigation of boundary layer development inside large wind farm clusters
 - Derivation of parametrizations for cumulative effects (global blockage)
- Industry Models [OpenWind / flappy]
 - New methods for Global Blockage Modelling
 - Improved modelling of large-scale wake effects
 - Improved modelling of boundary layer interaction

→ Reduction of uncertainty of industry (reduced order, i.e. fast) models

Most advanced software for creating & optimizing turbine layouts

Results – Airborne Measurements

- More than 40 flights conducted in first two project years, focusing on:
 - Global Blockage Effect
 - Coastal Effects
 - Large-scale Cluster Wake Effects
- Data useful for mesoscale and wake model validation
- Several benchmarking activities are currently planned.

Results – Industry Model Development

Г	✦	٦.
ė	ė	ė

How do engineering models need to be tuned to be able to capture large-scale wake effects well?

What is the impact of the wind farm expansion on future wind farm yields **using** well validated models?

20180321 at 05:48 UTC (Copernicus Sentinel data (2018))

Fraunhofer

IWES

Large-Scale Turning

Idea: introduce this effect by coupling of mesoscale data with engineering models?

Fraunhofer

IWES

ForWind 🟹

hereon

Large-Scale Turning

Solution: calculate streamline and deflect the wake according to the mesoscale background wind field data

Fraunhofer

IWES

ForWind 🐺

11

X-WAKES

Large-Scale Turning

Solution: calculate streamline and deflect the wake according to the mesoscale background wind field data

ForWind **W**

Fraunhofer

IWES

Large-Scale Turning

- Large-scale wake turning effect is wind speed and direction dependent and can result in over / underestimation in the order of 1%
- Potential to reduce and especially understand the wake modelling uncertainty
- Wake modelling uncertainty is still key contributor to overall uncertainty

σ_ε [-]

(0, 20]	-0.014	0.197	0.100	0.035	0.045	0.061	0.003	0.029	0.008		
(20, 40] ·	-0.004	-0.003	-0.031	-0.016	-0.010	0.017	0.002	-0.002	0.000		
(40, 60]	-0.081	-0.013	-0.032	-0.001	0.009	-0.003	0.000	-0.002	-0.040		
(60, 80] ·	0.008	0.030	0.023	-0.005	0.012	0.009	-0.000	-0.000	0.000	0.000	0.000
(80, 100] ·	0.147	-0.013	-0.033	-0.035	-0.058	-0.001	-0.013	0.004	-0.000	0.000	0.000
(100, 120]	0.195	0.093	0.066	0.015	0.011	0.000	0.005	-0.001	0.000	0.000	
(120, 140] ·	0.338	0.150	0.072	-0.000	-0.000	0.028	0.016	0.013	0.005	-0.000	
(140, 160] ·	-0.118		0.001	-0.024	-0.032	-0.004	-0.013	-0.035	-0.014	-0.000	
<u> </u>	0.123	0.166	0.074	0.060	0.008	-0.012	-0.008	-0.009	0.000	0.000	-0.000
<pre> [180, 200] - </pre>	-0.062		-0.180	-0.072	-0.062	-0.036	-0.005	-0.002	0.005	0.000	-0.000
(200, 220] ·	-0.718	-0.427		-0.126	-0.035	-0.005	0.009	0.010	-0.001	0.000	0.000
(220, 240] ·	0.760	0.698	0.222	0.019	-0.112		0.005	0.000	0.001	0.000	-0.041
(240, 260] ·	0.374	-0.555	-0.393	0.033		0.133	0.047	0.005	0.004	-0.005	-0.019
(260, 280] ·	-0.046	-0.086	0.010	0.115		0.049	0.026	0.008	0.004	0.002	-0.002
(280, 300] -	0.412		0.066	0.056	0.080	-0.010	-0.001	0.007	-0.004	-0.003	0.000
(300, 320] ·	0.048	0.064	-0.020	-0.030	-0.033	-0.023	-0.046	-0.007	0.002	0.001	-0.000
(320, 340] ·	-0.021	-0.092	-0.079	-0.021	0.009	-0.014	-0.003	-0.018	-0.023	-0.000	-0.002
(340, 360] ·	0.035	0.102	0.051	0.041	-0.005	-0.008	-0.012	0.014	0.003	-0.105	0.000
	(2, 4]	(4, 6]	(6, 8]	(8, 10]		(12, 14] WS [m/s]	(14, 16]	(16, 18]	(18, 20]	(20, 22]	(22, 24]

Mesoscale Model Validation

Scanning Lidar Campaign

- Scanning lidar measurement campaign at GodeWind
- Duration: 5 months spring to autumn 2020
- Mesoscale model simulations:
 - WRF (red): without wind farm parametrisation
 - WRF-WF (green): including wind farm parametriation
- Good agreement when using wind farm parametrisation
- Difference around 2% in wind speed on average
- Model setup is well suited for cluster wake modelling

[Cañadillas, B et al. Wind Energ. Sci. Discuss. [preprint], 2022]

IWES

Fraunhofer

Wind Speed Reduction

Past - 2011-2020

- Mesoscale model simulation INCLUDING wakes
- Wind farms represented as realistically as possible in terms of hub height, diameter, thrust and power curves
- Wind farms wakes accounted for based on official commissioning date

Wind Speed Reduction

Future – 2021-2027

- Mesoscale model simulation INCLUDING wakes
- Reference year: 2006 representative for the climatology
- Future turbine technology (2025-2027): 15 MW IEA turbine
- Wind speed reduction until 2030 (i.e. 30 GW) will be part of investigations in following months

Conclusions

Offshore Wakes and Wind Resource Research

- New government has ambitious plans for offshore wind farm expansion, but areas are very limited – need to plan wisely already now
- X-Wakes focusing on improving models and transferring knowledge towards more efficient wind farm operation and planning
- Cross-border planning and joint research between North Sea / Baltic Sea states is extremely important
- Looking forward to collaborations within the community!

Acknowledgements

The X-Wakes project is funded by the German ministry of Economic Affairs and Climate Action (BMWK) under grant number FKZ 03EE3008 (A-G) on the basis of a decision by the German Bundestag.

Computing resources were partly provided by the North-German Supercomputing Alliance (HLRN)

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Questions?

19

Thank You

X-Wakes Consortium at Kick-Off Meeting (12-2019)

20