Dynamics of the center of wind pressure:

From a description of the wind to an estimator of the loads on a wind turbine

<u>Daniela Moreno</u>^a, Jan Friedrich^a, Carsten Schubert^b, Marcel Bock^a, and Joachim Peinke^a

^a ForWind - Universität Oldenburg, Germany. ^b ICM - Chemnitz, Institute for Mechanical and Industrial Engineering Chemnitz, Germany.

> RAVE Workshop 2025 Berlin, Germany April 2nd, 2025

– Carl von Ossietzky

Universität

Oldenburg

Motivation

- Critical events on loads* of operating wind turbines (WTs), not predicted by numerical simulations
- Measurements and simulations under same standard wind conditions (e.g., \bar{u} , TI, shear exp.)

Are some critical load events induced by certain wind structures not included in the current wind models?

*Tilt and yaw bending moments at the main shaft of the turbine

Carl von Ossietzky

Universität

Motivation

Are those critical load events induced by certain wind structures not included in the current wind models?

• What do we know about the load* events?

• Bump event: Large scale structure \rightarrow Large amplitude, low-frequency (>10s)

*Tilt and yaw bending moments at the main shaft of the turbine

Carl von Ossietzky

Universität

Center of Wind Pressure (CoWP)^[1]

Definition

- Description of large-scale wind structures
- Effect on the tilt and yaw moments at the main shaft
- Bending moment, $T = l \times F_T$ CoWP
- CoWP: Location of point-wise F_T , for inducing T
- Calculated purely from a wind field u(y, z, t)

 $CoWP_{y}(t) = \frac{T_{y}}{F_{T}} = \frac{\sum_{i=1}^{n} y_{i} \cdot u^{2}(y_{i}, z_{i}, t)}{\sum_{i=1}^{n} u^{2}(y_{i}, z_{i}, t)}$

 $u(y_i, z_i, t)$ $v_{0}, z_{0} COWP_{z}$ $y_{0}, z_{0} COWP_{y}$ $v_{0}, z_{0} COWP_{y}$ $v_{0}, z_{0} COWP_{y}$

RAVE Workshop 2025

Carl von Ossietzky

Universität

Oldenburg

[2]

[1] Schubert, C., et al., Wind Energy Sci. Disc., 2025,1-19, DOI: 10.5194/wes-2025-28, 2025

Correlation to bending moments

- BEM simulated moment (T_{BEM}) and CoWP
- Filtered and normalized signals: low-pass filter, zero mean and standard deviation equal to 1

• Strong correlation: Correlation factor ~0.9

Carl von Ossietzky

Universität

Oldenburg

So far...

* low frequency dynamics

So far...

* low frequency dynamics

Carl von Ossietzky

Universität

Stochastic model

- Description of the dynamics of CoWP
- Langevin stochastic approach

$$\frac{d}{dt}CoWP(t) = D^{(1)}CoWP(t) + \sqrt{D^{(2)}CoWP(t)} \cdot \Gamma(t)$$
Deterministic Stochastic

- $D^{(1)}$ drift coeff., $D^{(2)}$ diffusion coeff., and Γ gaussian noise
- $D^{(1)}$ and $D^{(2)}$ can be extracted from time series of CoWP [3][4]
- Integration of the equation to reconstruct random signals (with statistical properties of original data)

Carl von Ossietzky

Jniversität

Oldenburg

Stochastic model

- Description of the dynamics of CoWP
- Langevin stochastic approach

- $D^{(1)}$ drift coeff., $D^{(2)}$ diffusion coeff., and Γ gaussian noise
- $D^{(1)}$ and $D^{(2)}$ can be extracted from time series of CoWP [3][4]
- Integration of the equation to reconstruct random signals (with statistical properties of original data)

Carl von Ossietzky

Universität

Oldenburg

As estimator of the loads

- Comparison between original CoWP, simulated moment (T_{BEM}) and reconstructed CoWP_R
- Probability density function and damage equivalent load (DEL) \rightarrow DEL~ $n_i s_i^m$

- Reconstructed signals reproduce the statistics of the original CoWP and BEM bending moments.
- Very long time series can be generated load assessment over life-time span
- * low-frequency dynamics

Carl von Ossietzky

Universität

Conclusions

- The CoWP is introduced as a feature of a wind field
- The CoWP and bending moments* at the main shaft (i.e., tilt and yaw) are strongly correlated
- The dynamics of the CoWP are characterized via the stochastic Langevin approach
- The dynamics of the CoWP are used for reconstruction of random signals of the bending moments* Very long time series can be generated → Reduction on time and complexity compared to BEM
- The reconstructed signals agree with the original CoWP: statistics and DEL

*low-frequency dynamics

Current work

Comparison of CoWP between atmospheric wind and different wind models

Larger amplitudes of CoWP within atmospheric wind \rightarrow Unexpected load events in operating turbines?

- Correlation of CoWP to different loads on turbine (e.g., on blades, tower)
- Incorporation of dynamics of CoWP into wind models for numerical simulations

As characteristic of large-scale wind structures

- Comparison of the CoWP for different simulation methods: LES with actuator line, LES with blade resolved
- Transfer functions: from CoWP to actual values of loads

Carl von Ossietzky

Universität

Oldenburg

12

Thank you for your attention! Questions?

Daniela Moreno - PhD candidate - <u>aura.daniela.moreno.mora@uni-oldenburg.de</u> Universität Oldenburg/ForWind - Oldenburg, Germany Supported by:

Carl von Ossietzky

Universität

Oldenburg

RAVE Workshop 2025

Federal Ministry for Economic Affairs and Climate Action

References

[1] Schubert, C., et al. 2025. Introduction of the Center of Wind Pressure for correlating large-scale turbulent structures and wind turbine loads. Wind Energy Sci. Disc., 2025,1–19, DOI: 10.5194/wes-2025-28.

[2] Moreno, D., et al. 2024. Dynamics of the virtual center of wind pressure: An approach for the estimation of wind turbine loads, Journal of Physics: Conf. Ser., 2767, 022 028,440. DOI: 10.1088/1742-6596/2767/2/022028.

[3] Rinn P, Lind P G, Wächter M and Peinke J. 2016. *The Langevin Approach: An R Package for Modeling Markov Processes*. Journal of Open Research Software, 4. ISSN 2049-9647

[4] Reinke N, Fuchs A, Medjroubi W, Lind P G, Wächter M and Peinke J. 2015. *The Langevin Approach: a simple stochastic method for complex phenomena*. DOI: 10.1007/978-3-319-18206-3_6.

[5] Moreno, D., et al. 2025. From the center of wind pressure to loads on the wind turbine: A stochastic approach for the reconstruction of load signals. *Under preparation*.

Carl von Ossietzky

Universität

Oldenburg