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From wind measurement to long-term wind resource
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▪ Wind measurement 

▪ Data usually contains gaps

▪ Short term (1-5 years)

▪ Data gap filling

▪ Numerical algorithm (linear, ML…)

▪ Model data input (ERA5, NEWA…)

▪ Long-term extrapolation (20-30 years)

▪ Numerical algorithm (linear, ML…)

▪ Model data input (ERA5, NEWA…)

Ein Bild, das draußen, Himmel, Wasser, Boot enthält.

Automatisch generierte Beschreibung

© Fraunhofer IWES, Caspar Sessler



The research question
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Since training data is the same…

Is gap filling giving us any 
additional information?



Data base
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1-hour wind speed and direction data at 100m

▪ „Measurement campaign“ data from FINO2, FINO3 und Ijmuiden:
▪ 2 years (2012 – 2014)

▪ Without gaps

▪ No nearby wind farms

▪ ERA5 reference data

M. Jonietz et al., “Understanding the impact of data gaps on long-term offshore wind resource estimates,” Wind En. Sc, 2023, 

10.5194/wes-2023-127



How to choose a numerical method
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Train-test-split

▪ K-fold validation
▪ Split measurement into train and test subsets

▪ Create algorithm that generates data in training period

▪ Apply algorithm to generate data in test period

▪ Compare generated data with actual measurement in test subset (RMSE, R², Distribution…)

▪ Repeat for other test subsets and average score over all test subset results

▪ Train-test splitting strategies:

Random Coherent



Do we have a winner?
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Which algorithm gives the best k-fold validation results?

▪ Tested methods: 
▪ KNN (K=3)

▪ KNN (K=300)

▪ linear interpolation

▪ Tested statistics:
▪ Mean wind speed

▪ Mean wind direction

▪ Wind speed distributions

▪ Optimal algorithm depends on 

test subset distribution

Coherent split

𝑾𝑺 𝑫𝒊𝒓
𝑾𝑺

𝑫𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 

FINO3 KNN (K = 3) KNN (K = 3) KNN (K = 3)

FINO2 KNN (K = 3) KNN (K = 3) KNN (K = 3)

Ijmuiden KNN (K = 3) KNN (K = 3) KNN (K = 3)

Random split

𝑾𝑺 𝑫𝒊𝒓
𝑾𝑺

𝑫𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 

FINO3 KNN (K = 300) KNN (K = 300) KNN (K = 300)

FINO2 KNN (K = 300) linear linear

Ijmuiden linear KNN (K = 300) linear



Evaluating gap filling effect on the long-term extrapolation
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For coherent gaps

ERA5Measurement
LTE-Without 

gaps

LTE with gaps
Measurement with 

gaps

Long-term 

extrapolation 

Introduce gaps Compare LTE-

Statistics

LTE filledMeasurement filled

Fill gaps
Compare LTE-

Statistics

Repeat for multiple 
gap starting dates



Are long-term extrapolations affected by gap filling?
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▪ No effect when filling with linear interpolation

▪ KNN- filling reduces gap effect in ”some” cases

▪ Filling and extrapolating with the same 

reference data has no advantage

M. Jonietz et al., “Understanding the 

impact of data gaps on long-term 

offshore wind resource estimates,” 

Wind En. Sc, 2023, 10.5194/wes-

2023-127
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Thank you for your attention

—

© Fraunhofer IWES/Frank Bauer
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Offshore wind profile estimation 

is key for site assessment.

© Fraunhofer IWES/Gerrit Wolken-Möhlmann



How can machine 

learning mitigate 

the discrepancies 

caused by the large 

grid cells of ERA5?



• Dataset

• Method: Random forest-based models

• Results: Model performance

• Discussion: Model error interpretation

• Summary
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Data for Model Training and Validation

• Four locations within a 200 km wide 

region in the Dutch part of the North Sea

WARNING

TERMINOLOGY ALERT!

• Same site validation is when training
and validation subsets are from the
same campaign.

• Round robin validation is otherwise.

• Two-year floating lidar for each location.
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Test – Train Split

Train

Test
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Model Input - Output

Wind Profile

U_4m, 

Pressure, 
Temperature, 

RH, SST

© IEA Wind TCP RP 18. Floating Lidar Systems

Input

Output10 min

10 min
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Random Forest and Quantile Regression

Only the average of the samples in each leaf is stored

The sample distribution at each leaf is stored: any statistical 

parameter can be derived.  
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Model Training

• Train the random forest model using 85% of the 

data. 

Wind Profile

U_4m, 

Pressure, 
Temperature, 

RH, SST

Train
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Model Testing

Wind Profile

U_4m, 

Pressure, 
Temperature, 

RH, SST
• Train the random forest model using 85% of the 

data. 

• Validate the model on the remaining 15% based 

on same site and round robin approaches. 

Test
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Model Testing

Wind Profile

U_4m, 

Pressure, 
Temperature, 

RH, SST
• Train the random forest model using 85% of the 

data. 

• Validate the model on the remaining 15% based 

on same site and round robin approaches. 

Test
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Why to develop such a model?

U_4m, 

Pressure, 
Temperature, 

RH, SST

Wind Profile

1. Fill the lidar data gaps 
2. Spatial extrapolation in the validated region
3. More localized predictions compared to reanalysis 

datasets

Added 
Value

contingent upon near-
surface data availability



How does the model perform?

© Fraunhofer IWES/Gerrit Wolken-Möhlmann



Accuracy drops with distance to the training site.
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• The distance from 
the training location 
impacts the bias. 

Error dependency on the distance to training site. Horizontal lines indicate ERA5 error metrics pre- and post-correction,
via an MCP using the training subset to derive correlation parameters.

Same site validation



Accuracy drops with distance to the training site.
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• The distance from 
the training location 
impacts the bias. 

Same site validation

Error dependency on the distance to training site. Horizontal lines indicate ERA5 error metrics pre- and post-correction,
via an MCP using the training subset to derive correlation parameters.



Accuracy drops with distance to the training site.
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• The RMSE grows 
with distance to 
training site, but 
always lies below 
ERA5. 

Error dependency on the distance to training site. Horizontal lines indicate ERA5 error metrics pre- and post-correction,
via an MCP using the training subset to derive correlation parameters.



Accuracy drops with distance to the training site.
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• Regardless of 
the training site, 
random forest 
models show 
better correlation 
with the 
observations.

Error dependency on the distance to training site. Horizontal lines indicate ERA5 error metrics pre- and post-correction,
via an MCP using the training subset to derive correlation parameters.



Can the ML model capture 
the physics?

© Fraunhofer IWES/Gerrit Wolken-Möhlmann



Feature importance
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• Near surface wind speed is the most important feature.

• Air-sea temperature difference as second most 

important: key deriver for stability and shear. 

• In presence of air pressure, the air temperature loses 

importance, as it is related to pressure via ideal gas 

law. 



What can the model error be 
attributed to?

© Fraunhofer IWES/Gerrit Wolken-Möhlmann
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The Mean Absolute Error peaks at the coastal wind sector.

• Both the RF model and ERA5 

exhibit higher Mean Absolute 

Error (MAE) for the wind 

originating from the coastal 

region.

• Random forest is more accurate 

than of ERA5  in all wind sectors, 

including the coastal sector. 

Error dependency on wind direction at HKW at 100 m. The bin counts
are depicted in gray, with the coastal sector highlighted in red.

Coastal sector
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The Random Forest model shows reduced accuracy for stable conditions.

• Random forest-based models are less 

accurate when the wind aloft is 

decoupled from the surface (stable 

conditions).

Box plot depicting the average RMSE for stable and unstable conditions across all
heights, with variations attributed to different locations.



Can the model overcome the 
large grid size of ERA5 to 
provide localized predictions?

© Fraunhofer IWES/Gerrit Wolken-Möhlmann
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The Random Forest model captures the wind speed variability more accurately 

than ERA5.

• ERA5 consistently underestimates

wind speed variability, exhibiting a 

deviation of 22-30% from 

observed hourly ramp rates, which 

reduces to 16-27% after MCP 

correction. 

• Random Forest predicts more 

localized wind profiles, 

demonstrating a deviation of 2-

9%.

Absolute ramp rate distribution at HKW at 100 m for ERA5 before and after
correction, and random forest for same site and round robin approaches.



Summary and Conclusions
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• A Random Forest model was validated in the North Sea in a 200 km 

wide region.

• Both the random forest model and ERA5 face challenges to model the 

wind originating from the coastline. 

• The ERA5 underestimation of the wind speed variability, due to the 

large grid size, can be mitigated through the random forest model.

• Application: Lidar data gap filling vertical and horizontal extrapolation of 

wind profile

• Short coming: Shown results for free inflow – waked sectors are filtered 

out

Coastal sector
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Thank you 

for your time!
—

© Fraunhofer IWES/Frank Bauer
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