

University of Stuttgart Stuttgart Wind Energy (SWE) @ Institute of Aircraft Design



Bundesministerium für Wirtschaft und Klimaschutz

fgrund eines Beschlusses <u>Deutsc</u>hen Bundestages

WINDFORS

Windenergie

Forschungscluster

#### Assessment of Deep Learning Surrogate Load Model Using RAVE Data

To estimate loads without accurate wind turbine model

Dexing Liu, Nico Ruck, Prof. Dr. Po Wen Cheng





#### Outline

- Motivation
- Methodology
  - Transfer Learning
  - Databases
- Results
  - ANN model for NREL 5MW
  - TL model for Senvion 5MW
- Take-away

#### **Motivation**

Surrogate model for load predication

- Turbine level: lack of the design information
- Farm level: limited usable dataset





### Methodology

Transfer Learning based on RAVE data







Load model of Senvion 5MW (AV4 )



### Methodology

#### Simulation database for NREL5MW (3240, 9)



## Methodology RAVE database for Senvion 5MW



- Meteorological data from FINO1
  - Wind speed
  - TI
  - PLexp (vertical sheer exponent)
- Senvion 5MW (AV4)
  - Blade pitch angle
  - Power
  - Blade1 root moment (edgewise)
  - Blade1 root moment (flapwise)
  - Tower base moment (side-side)
  - Tower base moment (fore-aft)

#### **Results**

#### Filtered database for Senvion 5MW (1728, 9)





# Results ANN model of NREL 5MW, simulation database



University of Stuttgart, Stuttgart Wind Energy (SWE) @ Institute of Aircraft Design

# Results TL model of Senvion 5MW, RAVE database











University of Stuttgart, Stuttgart Wind Energy (SWE) @ Institute of Aircraft Design

# Results + ANN model of Senvion 5MW, only RAVE database











University of Stuttgart, Stuttgart Wind Energy (SWE) @ Institute of Aircraft Design

#### Take-away

- ANN model based on simulation data
  - NREL5MW RWT
  - OpenFAST
- Transfer learning model based on RAVE measurement data
  - Worse prediction on tower base DEL (sideto-side)
  - Hydro conditions are not included
  - ANN model based on the purely RAVE measurement data
    - Prediction performance over the transfer learning method
    - Dataset size

#### Further optimization

- Include hydro conditions
- Datasize variations
- Wake influence



University of Stuttgart

### Thank you!





Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages des Deutschen Bundestages

#### **Dexing Liu**

e-mail liu@ifb.uni-stuttgart.de phone +49 (0) 711 685-68333 +49 (0) 711 685-68293 fax

University of Stuttgart Stuttgart Wind Energy (SWE) Allmandring 5B, 70569 Stuttgart Any ideas on further TL application?