WHEN TRUST MATTERS

RAVE – ML

The End-to-End cycle of the RAVE model

AGENDA

- Introduction how it all started ?
- Automatic data-quality control (ADQC)
- ML-ADQC
- How much data is good data ?
- Can the models be transferred ?
- Sensitivity Analysis
- Future work
- Discussion

Project Data – Research at Alpha Ventus (RAVE)

- > The research Initiative RAVE carries out research and development work on the offshore test field alpha Ventus.
- RAVE is funded by the Federal Ministry for Economic Affairs and Climatic Actions (BMWK) and coordinated by the Fraunhofer Institute for Wind Energy Systems (IWES).
- In more than 30 research projects, more than 60 partners from science and industry have been working on a wide range of research questions since 2008.
- > The financial support from the BMWK so far amounted to more than 50 million euros.

Wind Farm Outlook

- > 45 Km North von Borkum
- 30 m water depth
- 12 Wind turbines
 6 AREVA WIND M5000
 6 Senvion 5M
- CAPEX : 250 Million Euros
- More than 10 years of measurement data

Introduction – How it all started

Automatic data quality control (ADQC)

Objective

- Control the data collected from RAVE wind farm
- Plausibility check on raw signals (0.2 to 50 HZ signals)
- Automating the control and flagging process
- Independent to sensor and measurement system
- Minimal input parameters (Robust model)
- Save time and operational cost
- High quality data for future applications

Position	Test Type	Meaning	Thresholds	Description
1	Length	Reduced data length	N _{crit} %	Data of length of some value N _{crit} deviating from N 100%
2	Flat Line	Constant Signal	N/A	All values the same (e.g. bad if sensor is strain gauge, Ok/Check if machine data)
3	Flat Line	Partially Constant	l _{crit}	Constant values for a period of > t _{crit} seconds (e.g. signal dropouts)
4	Pre- defined Limits	Measurement Range	$\sum (x_i > x_{crit}) > 0$	At least one value outside the measurement range (e.g. ±10 V)
5	Spike	Spike events exceeded	n _{crit}	Number of spikes found in signal exceeds critical value.
6	Spike	Low Correlation	r _{crit}	Despiked signal poorly correlated with uncorrected signal.
7	Visual/ Qualitat ive	Qualitative assessment	N/A	Data assessed manually (e.g. poor correlation with wind speed).
8–16	-	- Spare -	-	Further tests included here.

Automatic data quality control (ADQC)

Limitations/Challenges

- Detects only 70% of the commonly occurring events
- > Time & environmental sensitive events are not detected
- Not using the historically available cleaned data
- > No data filling/replacement method available
- No additional advantages

(a) Drifting sensor

(c) Drifting & biasing sensor

Measured sensor data

Actual humidity value

(b) Biasing sensor

100 Time (Hours)

(d) Sensor without drift or bias

ML-ADQC – General Background

STEP 2 PRODUCTION

Performance/Results

Questions

- What are the minimum needed inputs & how is the model influenced with additional inputs
- > How much data we need ? More data more accuracy ?
- > Can the model to be transferred to other turbines?
- How sensitive is the model?
- > Can be e used for other applications ?

Case Study : ML-ADQC

Detection of sensor drift in the blade signals due to temperature change

- Sensor installed and calibrated in Autumn (Black circles)
- Drifting problem in the other seasons

Case Study : ML-ADQC

Detection of sensor drift in the blade signals due to temperature change

How much data is good data?

What are the minimum needed inputs & how is the model influenced with additional inputs ?

SCADA

- Yaw angle
- Generator speed
- Pitch angle
- Electrical power
- Wind speed
- Rotor position

Tower bottom acceleration

- Acceleration X direction
- Acceleration Y direction

- Temp blade root
- Temp tower sections
- Temp nacelle cooling

- > Neighbourhood component analysis was performed to select potential inputs
- Approx. 4 years of cleaned database was used
- No status filters are applied

Experiments/Results

What are the minimum needed inputs & how is the model influenced with additional inputs ?

Tower bottom lateral moment

What are the minimum needed inputs & how is the model influenced with additional inputs ?

	1	0.228538	0.256351	0.198047
	2	0.036658	0.076753	0.061565
	3	0.152571	0.593222	0.361466
	4	0.020876	0.012917	0.043916
	5	0.027502	0.022552	0.019618
	6	0.025781	0.025813	0.003829
ີວ	7	0.020813	0.020989	0.002504
<u>m</u>	8	0.010487	0.010192	0.010859
JS [9	0.011144	0.012809	0.039385
hii	10	0.001437	2.67E-05	0.01699
MS	11	0.060068	0.05762	0.04694
	12	0.003884	0.005121	0.01647
	13	0.257998	0.276332	0.049777
	14	0.296748	1.12665	0.245588
	15	0.268693	0.721729	1.05452
	16	0.587111	0.057777	1.07635
	17	0.772031	0.155121	0.624006
	18	0.843967	0.8773	0.16997
	10	0 606175	0 298275	0 1365/9
	19	0.000175	0.230275	0.430343

0.395507	0.331212	0.302408
1.15613	2.58096	0.07186
0.046797	0.026064	0.017394
0.020248	0.01744	0.014912
0.009194	0.003713	0.001363
0.017614	0.010165	0.008388
0.005165	0.001894	0.002984
0.002694	0.00226	0.004979
0.010226	0.004712	0.012374
0.004082	0.004415	0.01232
0.007904	0.005161	0.000823
0.007558	0.004656	0.000947
0.015135	0.004959	0.007907
0.017338	0.015949	0.01294
0.003546	0.019176	0.023919
0.010162	0.003278	0.036108
0.069055	0.038293	0.059935
0.278864	0.265614	0.033038
0.153538	0.139323	0.127455
0.192408	0.20139	0.183887

0.909236	0.187104	0.725884
0.670418	0.859176	1.01941
27.7187	9.05194	26.8037
5.17227	0.440546	14.0609
0.007918	0.143287	0.025591
0.013794	0.058564	0.014629
0.008105	0.000545	0.111809
0.011382	0.027149	0.128156
0.000916	0.015866	0.011871
0.042295	0.026516	0.002122
0.105571	0.032833	0.049213
0.145776	0.01913	0.041254
0.18451	0.009813	0.035565
0.171966	0.005497	0.037681
0.181599	0.062879	0.160806
0.094837	0.189163	0.296432
0.106726	0.522726	0.522399
0.163479	0.412695	0.567748
0.268413	0.712607	0.857328
0 439551	0 960713	1 14846

0.603089	0.729556	0.274468
0.434863	0.550394	0.1026
13.519	2.32224	5.33617
0.126168	0.124953	0.241274
0.052153	0.081229	0.038149
0.014509	0.037802	0.027586
0.043863	0.071711	0.015598
0.060304	0.111369	0.03091
0.09474	0.069263	0.074753
0.062682	0.035414	0.071117
0.046695	0.035885	0.03777
0.053612	0.106135	0.021085
0.055448	0.110654	0.030419
0.020825	0.096754	0.095957
0.008129	0.025153	0.15125
0.151393	0.00771	0.261153
0.339779	0.036769	0.14487
0.425659	1.22008	0.256193
0.403079	0.072042	0.041557
0.442866	0.076789	0.069633

SCADA SCADA+ACC SCADA+ACC+Temp

Blade Edgewise

Blade Flatwise

Tower lateral

Tower Longitudinal

Experiments/Results

How much data we need ? More data ? More accuracy ?

Coefficient of determination (R²) = $\sum (\mu_{cup} * \mu_{lid}) / (\sum (\mu_{cup} * 2) * \sum (\mu_{lid} * 2))$

Experiments/Results

How much data we need ? More data ? More accuracy ?

DNV

Can the model be transferred ?

Transferring ML Models

Model built based on one turbine

Transferred to other turbines

Reliable Lifetime Estimation

Measurement Data fulfilment/extrapolation

Turbine 1

Turbine 2

Can the model be transferred ?

Can the model be transferred ?

17 DNV ©

Can the model be transferred ? First Results

DNV

Sensitivity Analysis – Error vs Pitch vs WS/WD

Sensitivity analysis – Error vs pitch vs WS/WD

Sector evaluation – Blade Edgewise

Sector evaluation – Blade Flapwise

Additional findings

Additional findings

Prepare – Build - Deploy

Rave Measurement Dashboard

Quick demo of the dashboard ...

References

- <u>https://rave-offshore.de/en/events.html</u> All details regarding the ML model, data preparation, network etc. can be found here
- <u>https://github.com/RAVE-DNV/RAVE-Data-Quality-Control</u> Github repository
- <u>https://iopscience.iop.org/article/10.1088/1742-6596/1618/2/022006/pdf</u>
- <u>https://zenodo.org/record/4923193/files/BAYESIAN%20NEURAL%20NETWORK%20FOR%20ESTIMA</u> <u>TING%20%20FATIGUE%20LOADS%20ON%20WIND%20TURBINES.pdf</u>

SEESCHIFFFAHRT UND HYDROGRAPHIE

Anish Venu E-Mail: anish.venu@dnv.com

Hans-Peter Link E-Mail: Hans-Peter.Link@dnv.com

Bundesministerium für Wirtschaft und Energie

WHEN TRUST MATTERS

THANK YOU

Anish Venu Anish.venu@dnv.com

www.dnv.com

DNV

30 DNV ©

Experiments/Results - Bayesian Neural Network

