

Neural Networks for Offshore Wind Turbine Converter Failure Prognosis

Demitri Moros demitri.moros@edfenergy.com

10/10/2024

22 October 2024

Neural Networks for Offshore Wind Turbine Converter Failure Prognosis

Outline

1. What is the problem and why is it important?

2. Introduction of the data driven framework.

3. Stage 2 – Failure Prediction Model

4. Power Converters

5. What data have we used?

6. Description of our models and preprocessing

7. Model Performance

8. Model performance in the context of decision making

9. Future work

What is the problem?

- ~30% of lifetime costs of an OWF are O&M [1].
 - Opportunity for cost saving.
- Current maintenance practices are considered not optimal.
 - Reactive = catastrophic failure/large downtime.
 - Preventative = wasted component life.

Four Stage Data Driven Framework

Step by step process to reduce maintenance costs.

- 1. Reduce turbine downtimes by providing failure predictions,
- 2. Eliminate unnecessary maintenance actions.

Why Power Converters?

Wind Turbine Power Converters

- Change variable frequency generated electricity to fixed frequency grid electricity.
- Back-to-back AC/DC/AC converter layout connected by a DC Link.
- Three units per side.

What data have we used?

27 turbines offshore:

- 2.3MW,
- 16 corrective replacements (CR),
- SCADA Data,
- 4 years.

Problem set up

Binary classification

- Target variable is time to failure
- Classify each datapoint

Highly imbalanced

- Resampled to a ratio of 5:1
- 8 model architectures
- 16 models trained per architecture
 - 1 replacement kept separate for testing

What data have we used?

Feature	Source	Sample Rate	Scaling	6-feature models	12- feature
					models
Active power	SCADA	10-min averages	Rated power	\checkmark	\checkmark
Wind speed	SCADA	10-min averages	Min-max	\checkmark	\checkmark
Converter coolant temperature	SCADA	10-min averages	Min-max	\checkmark	\checkmark
Inverter coolant pressure	SCADA	10-min averages	Min-max	\checkmark	\checkmark
Tower humidity	SCADA	10-min averages	Min-max	\checkmark	\checkmark
Cumulative energy converted	Engineered	10-min averages	Min-max	\checkmark	\checkmark
Current phase L1- L2 difference	Engineered	10-min averages	Min-max	×	\checkmark
Current phase L1- L3 difference	Engineered	10-min averages	Min-max	×	\checkmark
Current phase L2- L3 difference	Engineered	10-min averages	Min-max	×	\checkmark
Voltage phase L1- L2 difference	Engineered	10-min averages	Min-max	×	\checkmark
Voltage phase L1- L3 difference	Engineered	10-min averages	Min-max	×	\checkmark
Voltage phase L2- L3 difference	Engineered	10-min averages	Min-max	×	✓

Pre-processing

- 1. Calculate cumulative energy conversion from installation to replacement
- 2. Remove datapoints for any overlapping instances of converter maintenance
- 3. Resample data to address class imbalance
- 4. Current and voltage difference features are engineered by subtracting one phase from the others. E.g. current L1 L2 and current L1-L3.
- 5. Data are assigned a time to failure interval of longer than 8 weeks to failure or within 8 weeks.
- 6. Scale the features
- 7. The target variable is ordinal encoded.

Evaluation metrics

- Classic metrics
 - Precision and recall
- Doesn't really evaluate the operational performance of a model
 - More interested in if we make a correct replacement decision and the cost impact of this
- Propose a new scoring function based on "expected cost of deployment"

Expected Cost of Deployment

- What is the cost of utilising our model in deployment?
- Annual failure rate of x (per turbine per year)
- A successful detection rate of z (recall)
- A false positive rate of y (per turbine per year)
- A corrective maintenance cost of C_c and preventative maintenance cost of C_p
- Over the course of n years we get the following cost:

$$C=c_p(ny+nzx)+c_cnx(1-z)$$

How to use the model outputs?

- We also need to decide how we can use the output of our models to decide on replacements
- I0 different thresholds:
 - 3,5,7,10,21,28 day consecutive thresholds
 - Weekly, 2,3,4-weekly modal predictions

Model architectures

8 different architectures:

- 1. Logistic Regression (LR) 6 input features
- 2. Decision Tree (DT) 6 input features
- 3. Random Forest (RF) 6 input features
- 4. XGBoost (XGB) 6 input features
- 5. ANN (ANN6) 6 input features
- 6. ANN (ANN12) 12 input features
- 7. InceptionTime network (IT6) 6 input features
- 8. InceptionTime network (IT12) 12 input features

Model architectures

Model architectures

DF

[3]

Model	Average Recall (%)	Average Precision (%)
LR	0	0
DT	26	49
RF	51	24
XGB	56	29
ANN6	57	39
ANN12	24	34
IT6	14	100
IT12	15	100

Failure Predictions

Performance in context of decision making

Improved performance compared to just recall and precision

Decision Threshold	Model	Successful Failures Prevented	Missed Failures	False Positives	Total Cost	Detection Rate	False Positive Rate	Expected Cost of Deployme nt (n=15)
3-day	ANN6	8.00	8.00	0.00	40.00	0.50	0.00	6.25
3-day	ANN12	9.00	7.00	0.00	37.00	0.56	0.00	5.78
3-day	IT6	3.00	13.00	4.00	59.00	0.19	0.19	11.45
3-day	IT12	4.00	12.00	4.00	56.00	0.25	0.19	10.98
3-day	LR	0.00	16.00	0.00	64.00	0.00	0.00	10.00
3-day	DT	13.00	3.00	73.00	98.00	0.81	1.78	30.58
3-day	RF	12.00	4.00	73.00	101.00	0.75	1.77	30.94
3-day	XGB	13.00	3.00	77.00	102.00	0.81	1.82	31.18
Weekly modal	ANN6	8.00	8.00	0.00	40.00	0.50	0.00	6.25
Weekly modal	ANN12	8.00	8.00	0.00	40.00	0.50	0.00	6.25
Weekly modal	IT6	3.00	13.00	4.00	59.00	0.19	0.19	11.45
Weekly modal	IT12	3.00	13.00	4.00	59.00	0.19	0.19	11.45
Weekly modal	LR	0.00	16.00	0.00	64.00	0.00	0.00	10.00
Weekly modal	DT	13.00	3.00	64.00	89.00	0.81	1.63	28.40
Weekly modal	RF	12.00	4.00	59.00	87.00	0.75	1.54	27.47
Weekly modal	XGB	14.00	2.00	68.00	90.00	0.88	1.67	28.53

What might be causing the poor performance?

- 1. Poor model
- 2. Insufficient data
 - We don't have enough data to capture all failure modes
- 3. Incorrect data
 - Not monitoring the right parameters
 - Sampling frequency too low

[4]

Wind Turbine Power Converter Failure Modes

Failure Mode	Importance	Monitoring Signals	Influencing Factors
Bond-wire lift-off	Low	V _{CE.Sat.} R _{ON}	Temperature cycles
Solder fatigue	Low	R _{th} , T _i , Tc, T _s	Temperature cycles
Degradation of thermal paste	Medium	R _{th} , T _i , Tc, T _s	Temperature cycles
Fretting corrosion	Low	V _{CE,Sat.} R _{ON} , AE	Vibrations
Tin whiskers	Low	X-ray Inspections	Unknown
Driver board faults	High	Inspections, V _{CE} , switch times, gate-voltages	Manufacturing defects, interference, humidity
EOS	High	Potentially gate voltages	Unknown
ESD	Low	AE, decay of gate charge	Faulty discharge paths
Parasitic inductances	High	Input and output currents to the converter and IGBTs	Improper converter design
Contamination	High	Inspections	Humidity, converter cabinet design
Electrochemical migration	High	Leakage currents	Humidity
SEB	Low	N/A	Geographical location
Lightning strike	High	N/A	Faulty lightning protection systems
DC faults	Medium	C, ESR	

- We need to analyse our model performance/design our models for deployment
- 2. Operators don't have access in the SCADA to the right information to be able to predict power converter failures well
- 3. Performing a failure mode analysis before training can help with feature selection
 - And determine feasibility

A general approach to designing failure prediction methods

What can we do next?

- Try different models
- Collect better and more data
 - Understand the symptoms of various faults better
 - Collect high frequency data relating to these symptoms
 - Increase our examples of failure. Synthetic data or data of failures from other wind farms.

So what?

- Deep learning methods could be promising for converter failure predictions.
 - It is hard to create generalisable models.
- Improving the performance of models needs the right data to be collected.
- When designing the models we need to consider the maintenance decision making process.

References

[1] BVG Associates. (2019). A Guide to an Offshore Wind Farm Updated and extended. Published on Behalf of The Crown Estate and the Offshore Renewable Energy Catapult, January, 1–70. http://www.thecrownestate.co.uk/guide_to_offshore_windfarm.pdf

[2] K. Fischer, T. Stalin, H. Ramberg, J. Wenske, and R. Karlsson. (2012). Investigation of converter failure in wind turbines. Elforsk, 58(12)

[3] I. Fawaz. (2020). InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery, 34, 1-27 https://doi.org/10.1007/s10618-020-00710-y

[4] K. Fischer, K. Pelka, S. Puls, M.H. Poech, A. Mertens, A. Bartschat, B. Tegtmeier, C.Broer and J. Wenske. (2019). Exploring the Causes of Power-Converter Failure in Wind Turbines based on Comprehensive Field-Data and Damage Analysis. Energies, 12(4), https://doi.org/ 10.3390/en12040593

[5] B. Bouaziz, F. Bacha, M. Gasmi. (2012). ind energy conversion system with full-scale power converter and squirrel cage induction generator. International journal of physical sciences, https://doi.org/10.5897/IJPS12.406

Thank you

Contact details: demitri.moros@edfenergy.com

The authors are grateful to EPSRC and NERC for funding for the Industrial CDT for Offshore Renewable Energy (EP/S023933/1)

Safeprocess 2024

