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What is the problem?

= ~30% of lifetime costs of an Maintenance Strategy
OWEF are O&M [1].

e Opportunity for cost saving.

Condition

= Current maintenance practices o
are considered not optimal.

* Reactive = catastrophic
failure/large downtime. |

* Preventative = wasted component Predictive
life.

q
: : eDF Safeprocess 2024 22 October 2024 3



Four Stage Data Driven Framework

Stage 1: » Stage 2: » Stage 3: > Stage 4:
Data Analysis Failure Prediction Model Development Maintenance Schedule Optimisation Benchmarking
Areas for optimisation : o
1 l (componentg of interest, lel:m:wf pmdl:;l.o ]:imOdel
scheduling etc.) atiure predictions Optimised maintenance schedule
Failure rates RULs
Costs of maitenance
Lost revenue and T
SCADA data generation g~ ATYA data Other operational work
Work orders CMS data (e.g. routine maintenance)
Power prices Weather forecast
Vessel fleet
Technician availability
Spare parts stock
= Applied by operator to any asset. Power price forecasts

= Step by step process to reduce maintenance costs.
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Stage 2 — Failure Prediction Model Development

Stage 1: » Stage 2: —p Stage 3: > Stage 4:
Data Analysis Failure Prediction Model Development Maintenance Schedule Optimisation Benchmarking

Areas for optimisation : o
1 i (componentﬁ of interest, Fa%ﬁ?ﬂ?;ﬂ;:gizizdel
scheduling etc.) R%L Optimised maintenance schedule
Failure rates S
Costs of maintenance
L ost revenue and T

SCADA data generation ¢~ ATYA data Other operational work
Work orders CMS data (¢.g. routine maintenance)
Power prices Weather forecast

Vessel fleet
Technician availability

. Spare parts stock
= Aims are: Power price forecasts

1. Reduce turbine downtimes by providing failure predictions,

2. Eliminate unnecessary maintenance actions.
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Why Power Converters?

Normalised Revenue Lost

Normalised Maintenance Costs

Due to Downtime

Gearbox - 0.307§ 0.021
Electrical - N\ 0.096
General - « 0.032
Blade - - 0.017 I All Maintenance
Coolant - . 0.031 [ All Maintenance
Pitch - 0:010 B Replacements Only
Yaw 1 0.014 X1 Replacements Only
Tower - 0.013 B Reoics Onl
Generator - 0.00780.003 epa?rs nly
Main Bearing - 0.0000-000 [==3 Repairs Only
0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
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= Back-to-back AC/DC/AC converter layout

Wind Turbine Power Converters

nange variable frequency generated
ectricity to fixed frequency grid

ectricity.

connected by a DC Link.

" Three units per side.

& SEeDF

Generator-side converter

DClink

Grid-side converter
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+
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Module
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What data have we used?

= 27 turbines offshore:
« 2.3MW,
* 16 corrective replacements (CR),
 SCADA Data,
* 4 years.

J
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Problem set up

" Binary classification
e Target variable is time to failure
 Classify each datapoint

" Highly imbalanced
 Resampled to a ratio of 5:1

= 8 model architectures

" 16 models trained per
architecture

* 1 replacement kept separate for
testing

¢
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Problem set up

Training Data

Test Data A
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What data have we used?

&

Active power
Wind speed
Converter coolant
temperature
Inverter coolant
pressure
Tower humidity
Cumulative energy
converted
Current phase L1-
L2 difference
Current phase L1-
L3 difference
Current phase L2-
L3 difference
Voltage phase L1-
L2 difference
Voltage phase L1-
L3 difference
Voltage phase L2-
L3 difference

“ - I B

SCADA
SCADA
SCADA
SCADA

SCADA
Engineered

Engineered
Engineered
Engineered
Engineered
Engineered

Engineered

10-min averages
10-min averages
10-min averages
10-min averages

10-min averages
10-min averages

10-min averages
10-min averages
10-min averages
10-min averages
10-min averages

10-min averages

Rated power

Min-max
Min-max

Min-max

Min-max
Min-max

Min-max

Min-max

Min-max

Min-max

Min-max

Min-max

AN

NS

SN

S S



Pre-processing
Calculate cumulative energy conversion from installation to replacement

Remove datapoints for any overlapping instances of converter
maintenance

Resample data to address class imbalance

Current and voltage difference features are engineered by subtracting one
phase from the others. E.g. current L1 — L2 and current L1-L3.

Data are assigned a time to failure interval of longer than 8 weeks to failure
or within 8 weeks.

Scale the features
The target variable is ordinal encoded.
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Evaluation metrics Predicted

= Classic metrics More than 8 Less than 8
o weeks to failure  weeks to failure
e Precision and recall I

Precision
" Doesn’t really evaluate the I

operational performance of a
model

* More interested in if we make a
correct replacement decision and
the cost impact of this

TN I FP

|
|

| |
RO B

ecall

| TP

I E— ———A
13
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weeks to failure

Actual

Less than 8 weeks More than 8

to failure

" Propose a new scoring function
based on “expected cost of
deployment”

-n
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Expected Cost of Deployment
" What is the cost of utilising our model in deployment?
» Annual failure rate of x (per turbine per year)
= A successful detection rate of z (recall)
= A false positive rate of y (per turbine per year)
" A corrective maintenance cost of C. and preventative maintenance cost of C,
" Over the course of n years we get the following cost:

C=cp(ny+nzx)+ccnx(1-2)
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How to use the model outputs?

= \We also need to decide how we can use
the output of our models to decide on
replacements

= 10 different thresholds:
e 3,5,7,10,21,28 day consecutive thresholds
* Weekly, 2,3,4-weekly modal predictions

|
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Model architectures

= 8 different architectures:

1.

0 NO U s WN

Logistic Regression (LR) — 6 input features
Decision Tree (DT) — 6 input features

Random Forest (RF) — 6 input features

XGBoost (XGB) — 6 input features

ANN (ANNG6) — 6 input features

ANN (ANN12) — 12 input features

InceptionTime network (IT6) — 6 input features
InceptionTime network (IT12) — 12 input features

¢
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Model architectures

Input Layer € R® Hidden Layer € R* Hidden Layer € R* Output Layer € R’

q
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Model architectures

input time
series
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Test Results

DT

_F
XGB
ANNG6
ANN12
IT6
IT12

& S eDF

Average Recall (%)
R 0

26
51
56
57
24
14
15
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100

Average Precision (%)
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Modal Prediction

Failure Predictions

Daily Modal Prediction against Time to Failure for CR 2 Daily Modal Prediction against Time to Failure for CR §

®  Healthy Predicbons
Unhealthy *  Unhaalihy Precictions rasnans was SRR — Unhealthy - a .
g
2
3
5 ®  Heatthy Predichons
-9 = Unbalihy Predictions
=
Z
=
Healthy Healthy —
an =0 o0 Lo « 1] a 178 -1 128 1000 =1 5 3
Days to Failure

k-
Days to Failure
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Performance in context of decision making
" Improved performance compared to just recall and precision

3-day ANNG 8.00 8.00 0.00 40.00 0.50 0.00 6.25
3-day ANN12 9.00 7.00 0.00 37.00 0.56 0.00 5.78
3-day IT6 3.00 13.00 4.00 59.00 0.19 0.19 11.45
3-day IT12 4.00 12.00 4.00 56.00 0.25 0.19 10.98
3-day LR 0.00 16.00 0.00 64.00 0.00 0.00 10.00
3-day DT 13.00 3.00 73.00 98.00 0.81 1.78 30.58
3-day RF 12.00 4.00 73.00 101.00 0.75 1.77 30.94
3-day XGB 13.00 3.00 77.00 102.00 0.81 1.82 31.18
Weekly modal ANNG 8.00 8.00 0.00 40.00 0.50 0.00 6.25
Weekly modal  ANN12 8.00 8.00 0.00 40.00 0.50 0.00 6.25
Weekly modal IT6 3.00 13.00 4.00 59.00 0.19 0.19 11.45
Weekly modal IT12 3.00 13.00 4.00 59.00 0.19 0.19 11.45
Weekly modal LR 0.00 16.00 0.00 64.00 0.00 0.00 10.00
Weekly modal DT 13.00 3.00 64.00 89.00 0.81 1.63 28.40
Weekly modal RF 12.00 4.00 59.00 87.00 0.75 1.54 27.47
Weekly modal XGB 14.00 2.00 68.00 90.00 0.88 1.67 28.53
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1

2.

3.

What might be causing the poor performance?

. Poor model

Insufficient data

* We don’t have enough data to capture all
failure modes

Incorrect data
* Not monitoring the right parameters
* Sampling frequency too low

q
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Wind Turbine Power Converter Failure Modes

Bond-wire lift-off

Solder fatigue

Degradation of thermal paste
Fretting corrosion

Tin whiskers

Driver board faults
EOS
ESD

Parasitic inductances

Contamination

Electrochemical migration
SEB

Lightning strike

DC faults
‘ ‘ ALY ¥ 4 |

Low
Low
Medium
Low
Low

High
High
Low

High

High

High
Low

High

Medium

VCE,Sat. |:\)ON
Ryw Tj» TC, T

R, T, TC, Tg
Ve sat. Ron AE
X-ray Inspections
Inspections, Vg, switch
times, gate-voltages
Potentially gate voltages
AE, decay of gate charge
Input and output
currents to the
converter and IGBTs

Inspections

Leakage currents
N/A

N/A
C, ESR

Temperature cycles
Temperature cycles
Temperature cycles

Vibrations
Unknown

Manufacturing defects,
interference, humidity

Unknown

Faulty discharge paths

Improper converter
design

Humidity, converter
cabinet design
Humidity
Geographical location
Faulty lightning
protection systems
Humidity



Learnings

1. We need to analyse Our mOdel DailyModanmdicti:m:f:jl::;lln:ctoF:LiIun:forCRz
performance/design our models for "
deployment

2. Operators don’t have access in the
SCADA to the right information to be
able to predict power converter failures
well

Maodal Prediction

3. Performing a failure mode analysis
before training can help with feature

selection o
* And determine feasibility

|
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A general approach to designing failure prediction methods

Start

Evaluate model on
Failure Mode Analysis Train model operational scoring
function

Determine
replacement decision
criteria

|dentify monitoring
Is this
better
than

Do | BAU?

have the Select model
data? Yes

No

signals required

Deplo
Stop o

q
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What can we do next?

Generator (G)

" Try different models Y e

Random input

= Collect better and more data "
* Understand the symptoms of various faults H |

Discriminator (D)

better G By  reorier
* Collect high frequency data relating to these  Generstor - g m
symptoms o /| |
* Increase our examples of failure. Synthetic . S
data or data of failures from other wind ‘
farms. [e— o
— g
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So what?

" Deep learning methods could be promising for converter failure
predictions.

* |tis hard to create generalisable models.
" Improving the performance of models needs the right data to be collected.

=" When designing the models we need to consider the maintenance
decision making process.

Windrurbine GSC GCC GridUtility

Grid Filter

[5]

[
: : EDF Safeprocess 2024 22 October 2024 27



References

[1] BVG Associates. (2019). A Guide to an Offshore Wind Farm Updated and extended. Published on Behalf of
The Crown Estate and the Offshore Renewable Energy Catapult, January, 1-70.
http://www.thecrownestate.co.uk/guide_to_offshore windfarm.pdf

[2] K. Fischer, T. Stalin, H. Ramberg, J. Wenske, and R. Karlsson. (2012). Investigation of converter failure in wind
turbines. Elforsk, 58(12)

[3] I. Fawaz. (2020). InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge
Discovery, 34, 1-27 https://doi.org/ 10.1007/s10618-020-00710-y

[4] K. Fischer, K. Pelka, S. Puls, M.H. Poech, A. Mertens, A. Bartschat, B. Tegtmeier, C.Broer and J. Wenske.
(2019). Exploring the Causes of Power-Converter Failure in Wind Turbines based on Comprehensive Field-Data
and Damage Analysis. Energies, 12(4), https://doi.org/ 10.3390/en12040593

[5] B. Bouaziz, F. Bacha, M. Gasmi. (2012). ind energy conversion system with full-scale power converter and
squirrel cage induction generator. International journal of physical sciences, https://doi.org/
10.5897/1JPS12.406

¢
: : eDF Safeprocess 2024 22 October 2024 28



Thank you

Contact details:
demitri.moros@edfenergy.com

The authors are grateful to EPSRC and NERC for funding for the Industrial CDT for Offshore Renewable Energy (EP/S023933/1)

“ Natural Engineering and
g EDF R&D UK Centre % Environment Safeprocess 2024 :hysu:athé:lencgls 22 October 2024 29
‘ ‘ Research Council esearch Counci




	Slide templates
	Slide 1
	Slide 2
	Slide 3: What is the problem?
	Slide 4: Four Stage Data Driven Framework
	Slide 5: Stage 2 – Failure Prediction Model Development
	Slide 6: Why Power Converters?
	Slide 7: Wind Turbine Power Converters
	Slide 8: What data have we used?
	Slide 9: Problem set up
	Slide 10: Problem set up
	Slide 11: What data have we used?
	Slide 12: Pre-processing
	Slide 13: Evaluation metrics
	Slide 14: Expected Cost of Deployment
	Slide 15: How to use the model outputs?
	Slide 16: Model architectures
	Slide 17: Model architectures
	Slide 18: Model architectures
	Slide 19
	Slide 20: Failure Predictions
	Slide 21: Performance in context of decision making
	Slide 22: What might be causing the poor performance?
	Slide 23: Wind Turbine Power Converter Failure Modes
	Slide 24: Learnings
	Slide 25: A general approach to designing failure prediction methods
	Slide 26: What can we do next?
	Slide 27: So what?
	Slide 28: References
	Slide 29


