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What is the problem?

Safeprocess 2024

▪ ~30% of lifetime costs of an 
OWF are O&M [1].

• Opportunity for cost saving.

▪ Current maintenance practices 
are considered not optimal.
• Reactive = catastrophic 

failure/large downtime.

• Preventative = wasted component 
life.

Maintenance Strategy

Reactive Preventative
Condition 

based

Current practices

Predictive
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▪ Applied by operator to any asset.

▪ Step by step process to reduce maintenance costs.

Four Stage Data Driven Framework

Safeprocess 2024
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▪ Aims are:
1. Reduce turbine downtimes by providing failure predictions,

2. Eliminate unnecessary maintenance actions.

Stage 2 – Failure Prediction Model Development

Safeprocess 2024



622 October 2024R&D UK Centre

Why Power Converters?

Safeprocess 2024
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▪ Change variable frequency generated 
electricity to fixed frequency grid 
electricity.

▪ Back-to-back AC/DC/AC converter layout 
connected by a DC Link.

▪ Three units per side.

Wind Turbine Power Converters

Safeprocess 2024

[2]
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▪ 27 turbines offshore:
• 2.3MW,

• 16 corrective replacements (CR),

• SCADA Data,

• 4 years.

 

What data have we used?

Safeprocess 2024



922 October 2024R&D UK Centre

▪ Binary classification
• Target variable is time to failure

• Classify each datapoint

▪Highly imbalanced
• Resampled to a ratio of 5:1

▪ 8 model architectures

▪ 16 models trained per 
architecture
• 1 replacement kept separate for 

testing

Problem set up

IDCORE EngD Project
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Problem set up

IDCORE EngD Project

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Training Data

Test Data
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What data have we used?

Safeprocess 2024

Feature Source Sample Rate Scaling 6-feature models 12- feature 

models

Active power SCADA 10-min averages Rated power ✓ ✓

Wind speed SCADA 10-min averages Min-max ✓ ✓

Converter coolant 

temperature 

SCADA 10-min averages Min-max ✓ ✓

Inverter coolant 

pressure 

SCADA 10-min averages Min-max ✓ ✓

Tower humidity SCADA 10-min averages Min-max ✓ ✓

Cumulative energy 

converted

Engineered 10-min averages Min-max ✓ ✓

Current phase L1-

L2 difference

Engineered 10-min averages Min-max  ✓

Current phase L1-

L3 difference

Engineered 10-min averages Min-max  ✓

Current phase L2-

L3 difference

Engineered 10-min averages Min-max  ✓

Voltage phase L1-

L2 difference

Engineered 10-min averages Min-max  ✓

Voltage phase L1-

L3 difference

Engineered 10-min averages Min-max  ✓

Voltage phase L2-

L3 difference

Engineered 10-min averages Min-max  ✓



1222 October 2024R&D UK Centre

1. Calculate cumulative energy conversion from installation to replacement

2. Remove datapoints for any overlapping instances of converter 
maintenance

3. Resample data to address class imbalance

4. Current and voltage difference features are engineered by subtracting one 
phase from the others. E.g. current L1 – L2 and current L1-L3.

5. Data are assigned a time to failure interval of longer than 8 weeks to failure 
or within 8 weeks.

6. Scale the features

7. The target variable is ordinal encoded.

Pre-processing

IDCORE EngD Project
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▪ Classic metrics
• Precision and recall

▪ Doesn’t really evaluate the 
operational performance of a 
model
• More interested in if we make a 

correct replacement decision and 
the cost impact of this

▪ Propose a new scoring function 
based on “expected cost of 
deployment” 

Evaluation metrics

IDCORE EngD Project

Predicted
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▪What is the cost of utilising our model in deployment?

▪ Annual failure rate of x (per turbine per year)

▪ A successful detection rate of z (recall)

▪ A false positive rate of y (per turbine per year)

▪ A corrective maintenance cost of Cc and preventative maintenance cost of Cp

▪Over the course of n years we get the following cost:

Expected Cost of Deployment

IDCORE EngD Project

C=cp ny+nzx +ccnx 1−z
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▪We also need to decide how we can use 
the output of our models to decide on 
replacements

▪ 10 different thresholds:
• 3,5,7,10,21,28 day consecutive thresholds

• Weekly, 2,3,4-weekly modal predictions

How to use the model outputs?

IDCORE EngD Project
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Model architectures

IDCORE EngD Project

▪ 8 different architectures:
1. Logistic Regression (LR) – 6 input features

2. Decision Tree (DT) – 6 input features

3. Random Forest (RF) – 6 input features

4. XGBoost (XGB) – 6 input features

5. ANN (ANN6) – 6 input features

6. ANN (ANN12) – 12 input features

7. InceptionTime network (IT6) – 6 input features

8. InceptionTime network (IT12) – 12 input features
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Model architectures

IDCORE EngD Project
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Model architectures

IDCORE EngD Project

[3]
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Test Results

Model Average Recall (%) Average Precision (%)

LR 0 0

DT 26 49

RF 51 24

XGB 56 29

ANN6 57 39

ANN12 24 34

IT6 14 100

IT12 15 100
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Failure Predictions

IDCORE EngD Project
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Performance in context of decision making

IDCORE EngD Project

▪ Improved performance compared to just recall and precision
Decision 

Threshold

Model Successful 

Failures 

Prevented

Missed 

Failures

False 

Positives

Total Cost Detection 

Rate

False 

Positive 

Rate

Expected 

Cost of 

Deployme

nt (n=15)

3-day ANN6 8.00 8.00 0.00 40.00 0.50 0.00 6.25

3-day ANN12 9.00 7.00 0.00 37.00 0.56 0.00 5.78

3-day IT6 3.00 13.00 4.00 59.00 0.19 0.19 11.45

3-day IT12 4.00 12.00 4.00 56.00 0.25 0.19 10.98

3-day LR 0.00 16.00 0.00 64.00 0.00 0.00 10.00

3-day DT 13.00 3.00 73.00 98.00 0.81 1.78 30.58

3-day RF 12.00 4.00 73.00 101.00 0.75 1.77 30.94

3-day XGB 13.00 3.00 77.00 102.00 0.81 1.82 31.18

Weekly modal ANN6 8.00 8.00 0.00 40.00 0.50 0.00 6.25

Weekly modal ANN12 8.00 8.00 0.00 40.00 0.50 0.00 6.25

Weekly modal IT6 3.00 13.00 4.00 59.00 0.19 0.19 11.45

Weekly modal IT12 3.00 13.00 4.00 59.00 0.19 0.19 11.45

Weekly modal LR 0.00 16.00 0.00 64.00 0.00 0.00 10.00

Weekly modal DT 13.00 3.00 64.00 89.00 0.81 1.63 28.40

Weekly modal RF 12.00 4.00 59.00 87.00 0.75 1.54 27.47

Weekly modal XGB 14.00 2.00 68.00 90.00 0.88 1.67 28.53
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What might be causing the poor performance?

IDCORE EngD Project

1. Poor model

2. Insufficient data
• We don’t have enough data to capture all 

failure modes

3. Incorrect data
• Not monitoring the right parameters

• Sampling frequency too low

[4]
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Wind Turbine Power Converter Failure Modes

IDCORE EngD Project

1. Poor model

2. Insufficient data
• We don’t have enough data to capture all 

failure modes

3. Incorrect data
• Not monitoring the right parameters

• Sampling frequency too low

Failure Mode Importance Monitoring Signals Influencing Factors

Bond-wire lift-off Low VCE,Sat. RON Temperature cycles

Solder fatigue Low Rth, Tj, Tc, Ts Temperature cycles

Degradation of thermal paste Medium Rth, Tj, Tc, Ts Temperature cycles

Fretting corrosion Low VCE,Sat. RON, AE Vibrations

Tin whiskers Low X-ray Inspections Unknown

Driver board faults High
Inspections, VCE, switch 

times, gate-voltages

Manufacturing defects, 

interference, humidity

EOS High Potentially gate voltages Unknown

ESD Low AE, decay of gate charge Faulty discharge paths

Parasitic inductances High

Input and output 

currents to the 

converter and IGBTs

Improper converter 

design

Contamination High Inspections
Humidity, converter 

cabinet design

Electrochemical migration High Leakage currents Humidity

SEB Low N/A Geographical location

Lightning strike High N/A
Faulty lightning 

protection systems

DC faults Medium C, ESR Humidity
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Learnings

IDCORE EngD Project

1. We need to analyse our model 
performance/design our models for 
deployment

2. Operators don’t have access in the 
SCADA to the right information to be 
able to predict power converter failures 
well

3. Performing a failure mode analysis 
before training can help with feature 
selection
• And determine feasibility
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A general approach to designing failure prediction methods

IDCORE EngD Project

Stop

Failure Mode Analysis

Identify monitoring 

signals required

Do I 

have the 

data?

Start

Select model

Determine 

replacement decision 

criteria

Train model

Evaluate model on 

operational scoring 

function

Is this 

better 

than 

BAU?

Deploy

Yes

No

Yes
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▪ Try different models

▪ Collect better and more data
• Understand the symptoms of various faults 

better

• Collect high frequency data relating to these 
symptoms

• Increase our examples of failure. Synthetic 
data or data of failures from other wind 
farms.

What can we do next?

IDCORE EngD Project
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So what?

Safeprocess 2024

▪ Deep learning methods could be promising for converter failure 
predictions.
• It is hard to create generalisable models.

▪ Improving the performance of models needs the right data to be collected.

▪When designing the models we need to consider the maintenance 
decision making process.

[5]
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Thank you
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Contact details:
demitri.moros@edfenergy.com
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