U.S. Advances in Digital Twinning for Offshore Wind Assets

RAVE Workshop 2024

Eric Hines, Azin Mehrjoo, Nasim Partovi-Mehr

Acknowledgements: Babak Moaveni, Chris Baxter, David Ciochetto, Aaron S. Bradshaw, Per Sparrevik, Bridget Moynihan, Eleonora Tronci, John DeFrancisci, Dan Kuchma

March 13, 2024

Fatigue Performance

Ph.D. work by Nasim Partovi-Mehr

U.S. East Coast Offshore Wind

Rhode Island

OF RHODE ISLAND

UNIVERSITY

Block Island Wind Farm

UNIVERSITY OF RHODE ISLAND

Structural Fatigue Analysis Framework

Structural Fatigue Analysis Framework

Rainflow counting of stress cycles

• Rainflow counting for a 10-minute interval on December 17, 2021 starting at 06:52 am

Virtual Sensors via Modal Expansion

• Damage vs. time ratio to the lifetime of 25 years using extrapolating 1-year monitoring:

Joint	Environment	Measured	Designed
#1	W3 Cath.Prot. DFF = 3	196 y	26 y
#2	W3 Cath.Prot. DFF = 3	222,000 y	76 y
#5	W3 in air DFF = 2	386 y	50 y

What cycles cause the most damage?

Sample stress time histories with high damage

2021 Wangwen Review of Fatigue Curves

(3600 s/h)(8760 h/y)(25 y) / (T = 4 s) = 1.97 E+08

Windows-Based Bayesian Assimilation Framework

Physics-Informed Neural Networks

Ph.D. work by Azin Mehrjoo

U.S. + North Sea Experience

Find a dynamic input at hub height that reproduces measured results

- Input load FA = fore-aft SS = side-to-side
- Accelerometers
- Strain gauges
- \star 🛛 Virtual Sensor

- 1- Windowed Based Input Estimation(WBIE)
- 2- Physics Informed Neural Network(LSTM)

Given:

- A validated model
- Available Measurements
- Position and number of the unknown loads

Find:

- Input load time history
- Estimation of vibration response at unmeasured locations (virtual sensing)

Estimated input load for a high wind case

Virtual Sensing at unmeasured locations

• Accelerometers

Strain gauges

Physics Informed Neural Network

Ι

Phase I model: Test on Real Data

Train Phase 2 by Fine-tuning

Comparison

Physics-based estimator

Very Accurate estimation

Interpretability

Needs a physical model

Takes long to run for 10 minuets of measurements Physics Informed NN estimator

