

International RAVE Workshop 2024: Load estimation using SCADA data for wind turbine blades

Author: Hannah Rose Mitchell Co-authors: Nigel Pready, David Garcia Cava, Ali Mehmanparast, Philipp Thies Industrial CDT in Offshore Renewable Energy (IDCORE) | Frazer-Nash Consultancy

> International RAVE Workshop 2024, Berlin, Germany 13th March 2024

Industrial CDT in Offshore Renewable Energy (IDCORE)

- Probabilistic structural integrity assessment of offshore wind turbine rotor blades for lifetime extension
- EPSRC and NERC funded industrial CDT for offshore renewable energy (IDCORE)
- University of Edinburgh, Exeter, Strathclyde, and the Scottish association for marine science (SAMS)
- Frazer-Nash Consultancy are sponsoring the EngD project

Lifetime Extension of Offshore Wind Turbines

- ORE Catapult estimate around 600 offshore WTs reaching end of life (EoL) by 2030 (in UK) [1]
- UK net zero targets 50 GW of offshore wind deployment by 2030 [2]
- Probabilistic methods to better understand uncertainties associated with RUL assessments

Probabilistic modelling with Bayesian networks (BNs)

Bayes theorem:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

- Advantages of BNs:
 - Variables represented as uncertain probability distributions
 - Work well with very limited data
 - Uses prior beliefs which can be updated through time

Sensitivity Analysis

Sobol Variance Analysis

- Sobol indices can be used to highlight which parameters contribute the most to the uncertainty in the output
- This can be used to identify where to focus effort to increase confidence in the component life assessment, for example through the addition of more data

Load Estimation using SCADA data for wind turbine blades International RAVE Workshop 2024

Probabilistic RUL Assessment for Wind Turbine Blades

Alpha Ventus Data

Turbine: AV4, Senvion 5M

Where: Blade root

Sensors: Strain gauges and "SCADA"

- AV-04_Nacelle and rotor, hub Blade connection
 - R4_D-B5b1a1 Rotor blade bending edgewise (kNm)
 - R4_D-B5b1a2 Rotor blade bending flapwise (kNm)
- AV-04_Nacelle and rotor, nacelle
 - R4_Generatordrehzahl_B4_50Hz (rpm)
 - R4_Pitchwinkel_lst_B4_50Hz (°)
 - R4_elektrische_Leistung_B4_50Hz (kW)
 - R4_Windgeschwindigkeit_B4_1Hz (m/s)

Time period: 2020-11-03 - 2023-03-31

Load Evaluation: Method

Pre-process data

- Cleaned data by removing any data points not representative of "normal" operation
- Binned data by wind speed
- Calculated mean and standard deviation of wind speed and turbulence intensity within each bin

OpenFAST simulations with NREL 5MW offshore wind turbine model

- 10-min simulated response of wind turbine using mean wind speed within bins
- NREL 5MW offshore wind turbine is the closest model to AV04 turbine

Compare results from OpenFAST to time series from strain gauges

- Compare mean, min, max values for wind speed and blade root bending moments
- Compare DELs calculated from simulated and measured data

Load Evaluation: Method

Pre-process data

- Cleaned data by removing any data points not representative of "normal" operation
- Binned data by wind speed

Load Evaluation: Method

OpenFAST simulations with NREL 5MW offshore wind turbine

- 10-min simulated response of wind turbine using mean wind speed within bins
- NREL 5MW offshore wind turbine is the closest model to AV04 turbine
- Mean wind speed: 18.8 m/s
- IEC turbulence class C
- 6 random wind seeds used

Conclusion and Next Steps

- Results will be used to quantify uncertainty in loading for input to Bayesian network
- Use RAVE data to inform loads for finite element modelling and fatigue assessment of an offshore wind turbine blade
- Build a Bayesian network for RUL of wind turbine blades

Thank you!

Author: Hannah Rose Mitchell Email: <u>h.Mitchell@fnc.co.uk</u>

> International RAVE Workshop 2024, Berlin, Germany 13th March 2024

References

- 1. Spyroudi, Angeliki. "End-of-life planning in offshore wind." Tech report. ORE Catapult, Glasgow, UK. 2021.
- 2. HM Government, "Offshore Wind Net Zero Investment Roadmap." Tech report. HM Government, UK. 2023.

